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Abstract

In many studies the data collected are subject to some upper and lower detection limits. Hence, the

responses are either left or right censored. A complication arises when these continuous measures present

heavy tails and asymmetrical behavior, simultaneously. For such data structures, we propose a robust

censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an

attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash,

skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as

special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates

of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows

us to estimate the parameters of interest easily and quickly, obtaining as a byproduct the standard errors,

predictions of unobservable values of the response and the log-likelihood function. The proposed methods

are illustrated through a real data application and several simulation studies.

Keywords: Censored regression models; Heavy tails; SAEM algorithm; Scale mixtures of skew-normal

distributions.

1. Introduction

Linear and non linear regression models with normal observational errors are usually applied to model

symmetrical data. However, several phenomena are not always in agreement with the assumptions of

the normal model. To deal with this problem, some proposals have been made in the literature to

replace the normality assumption with more �exible classes of distributions. For instance, Fernández

and Steel (1999) discuss some inferential procedures in regression models with Student-t distribution

for the errors. Ibacache-Pulgar and Paula (2011), propose local in�uence measures in the Student-t

partially linear regression model. Other existing methods for robust estimation are based on the class

of scale mixtures of normal (SMN) distributions introduced by Andrews and Mallows (1974). These

distributions have heavier tails than the normal one, so they seem to be a reasonable choice for robust
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inference. They include as special cases many symmetric distributions, such as the normal (N), Pearson

type VII (P-VII), Student-t (T), slash (SL) and contaminated normal (CN). Although these models are

attractive, there is a need to check the distributional assumptions of the model errors because these can

present skewness and heavy tail behavior, simultaneously. To overcome the problem of atypical data in

an asymmetrical context, Branco and Dey (2001) proposed the class of scale mixtures of skew-normal

(SMSN) distributions. This class of distributions contains the entire family of SMN distributions, and

skewed versions of classic asymmetric distributions such as the skew-normal (SN), skew-t (ST), skew-slash

(SSL) and skew contaminated normal (SCN) distributions.

In general, censored regression (CR) models are based on the development of the so called Tobit

model, which is constructed in terms of the normal assumption (Tobin, 1958). However, many models

do not �t the assumption of normality. Thus, in recent years several authors have studied CR models

for statistical modeling of censored datasets involving observed variables with heavier tails than the

normal distribution. For instance, Arellano-Valle et al. (2012) and Massuia et al. (2014) proposed an

extension of the CR model with normal errors (N-CR) to Student-t (T-CR) errors. Garay et al. (2015b)

proposed a robust CR model where the observational errors follow a SMN distribution (SMN-CR model).

More recently, Massuia et al. (2015) developed a Bayesian framework for CR models by assuming that

the random errors follow a SMSN distribution. In this work, we suggest an attractive ML estimation

procedure for CR models considering the SMSN class of distributions, extending the works by Arellano-

Valle et al. (2012), Massuia et al. (2014), Garay et al. (2015b) and supplementing the work by Massuia

et al. (2015) from a likelihood-based perspective.

A typical algorithm for ML estimation in models involving the class of SMSN distributions is the

EM algorithm and its variants. See, for instance, Basso et al. (2010), Lachos et al. (2010) and Garay

et al. (2011). However, in some cases EM-type algorithms are not appropriate due to the computational

di�culty in the E-step, which involves the computation of expected quantities that cannot be obtained

analytically and must be calculated using stochastic simulation. To deal with this problem, Delyon et al.

(1999) proposed a stochastic approximation version of the EM algorithm, the so-called SAEM algorithm.

This algorithm consists of replacing the E-step by a stochastic approximation obtained using simulated

data, while the M-step remains unchanged. Jank (2006) showed that the computational e�ort of SAEM

is much smaller and reaches convergence in just a fraction of the simulation size when compared to

Monte Carlo EM (MCEM). This is due the memory e�ect contained in the SAEM method, in which the

previous simulations are considered in the computation of the posterior ones. In this paper, we develop a

full likelihood approach for SMSN-CR models, including the implementation of the SAEM algorithm for

ML estimation with the likelihood function, predictions of unobservable values of the response and the

asymptotic standard errors as a byproduct.

The rest of the paper is organized as follows. In Section 2, we describe the family of SMSN distri-

butions, including an outline of the SAEM algorithms. The SMSN-CR model and the ML estimation

procedure based in the SAEM algorithm are described in Section 3. In Section 4, we discuss how to
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obtain the approximated standard errors. To examine the performance of our proposed methods, we

present various simulation studies in Section 5. In Section 6 the proposed method is illustrated by the

analysis of a real dataset. Section 7 concludes with a short discussion of issues raised by our study and

some possible directions for a future research.

2. Scale mixtures of skew-normal (SMSN) distributions

2.1. Preliminaries

In order to de�ne the SMSN-CR model, we �rst make some remarks related to the SMSN class of

distributions. This class of distributions was proposed by Branco and Dey (2001) and is a group of

skew-thick-tailed distributions that are useful for robust inference and that contain as proper elements

the SN, ST, SSL, SCN distributions and the entire family of SMN distributions proposed by Andrews

and Mallows (1974) (see also, Lange and Sinsheimer, 1993). Thus, in the following we present some

de�nitions where we explain �rst the fundamental concept of the SN distribution proposed by Azzalini

(1985), and its relation with the SMSN class of distributions.

De�nition 1. A random variable Z has a skew-normal distribution with location parameter µ, scale
parameter σ2 and skewness parameter λ, denoted by Z ∼ SN(µ, σ2, λ), if its probability density function
(pdf) is given by

fSN (z|µ, σ2, λ) = 2ϕ(z|µ, σ2)Φ

(
λ(z − µ)

σ

)
, z ∈ R, (1)

where ϕ
(
· |µ, σ2

)
denotes the density of the univariate normal distribution with mean µ and variance σ2 >

0 and Φ(·) is the cumulative distribution function (cdf) of the standard univariate normal distribution.

De�nition 2. A random variable Y has a SMSN distribution with location parameter µ, scale parameter
σ2 and skewness parameter λ, denoted by SMSN(µ, σ2, λ;H), if it has the following stochastic represen-
tation:

Y = µ+ κ(U)1/2Z, U⊥Z, (2)

where Z ∼ SN(0, σ2, λ), κ(·) is a positive function, U is a positive random variable with cdf H( · |ν)
indexed by a scalar or vector parameter ν. U⊥Z represents that the random variables U and Z are
independent.

The random variable U is known as the scale factor and its cdfH( · |ν) is called themixing distribution

function. Note that when λ = 0, the SMSN family reduces to the symmetric class of SMN distributions.

Using the representation given in Equation (2), we observe that

Y |U = u ∼ SN(µ, κ(u)σ2, λ)

and integrating out U from the joint density of Y and U leads to the following marginal density of Y :

fSMSN (y|µ, σ2, λ;H) = 2

∫ ∞

0

ϕ(y|µ, κ(u)σ2)Φ

(
λ(y − µ)

σκ(u)1/2

)
dH(u). (3)

Another important class of distribution, which will be useful for implementing the SAEM algorithm, is

the truncated SMSN distributions, given by the following de�nition:

De�nition 3. Let W ∼ SMSN(µ, σ2, λ;H) and P (a < W < b) > 0, with a < b. A random variable Y
has a truncated SMSN distribution in the interval ⌊a, b⌋, denoted by Y ∼ TSMSN(µ, σ2, λ;H, ⌊a, b⌋), if
it has the same distribution as W |W ∈ ⌊a, b⌋. Here ⌊a, b⌋ means that each extreme of the interval can be
either open or closed.
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Thus, the pdf of the random variable Y ∼ TSMSN(µ, σ2, λ;H, ⌊a, b⌋) is

fTSMSN (y | µ, σ2, λ ; H, ⌊a, b⌋) = fSMSN (y | µ, σ2, λ ; H)

FSMSN (b | µ, σ2, λ ; H)− FSMSN (a | µ, σ2, λ ; H)
11⌊a,b⌋(y),

where 11A(·) denotes the indicator function of the set A, i.e., 11A(y) = 1 if y ∈ A and 11A(y) = 0 otherwise.

fSMSN (· | µ, σ2, λ;H) and FSMSN (· | µ, σ2, λ;H) represent the pdf and cdf of the SMSN distribution,

respectively.

The following lemmas show a convenient stochastic representation of a SMSN random variable as well as

its cdf. These lemmas will be useful to implement the proposed SAEM algorithm.

Lemma 1. The random variable Y ∼ SMSN(µ, σ2, λ;H), has a stochastic representation given by

Y = µ+∆T + κ(U)1/2τ1/2T1, (4)

where ∆ = σδ, τ = (1 − δ2)σ2, δ =
λ√

1 + λ2
, T = κ(U)1/2|T0|, T0 and T1 are independent standard

normal random variables and | · | denotes absolute value.

Proof. See Basso et al. (2010).

The representation given in Lemma 1 is very appropriate to derive some mathematical properties and

can be used to simulate pseudo-realizations of Y . It is important to stress that this representation was

used by Basso et al. (2010) in the context of �nite mixtures of SMSN distributions and by Cancho et al.

(2011), Garay et al. (2011) and Labra et al. (2012) in the context of non-linear regression models for

complete data. For instance, from Equation (2), we have the following hierarchical representation:

Y |T = t, U = u ∼ N(µ+∆t , κ(u)τ),

T |U = u ∼ TN(0, κ(u) ; ⌊0,∞⌋),

U ∼ H( · ;ν), (5)

where TN(µ, σ2 ; ⌊a, b⌋) denotes a normal distribution with mean µ and variance σ2 truncated in the

interval ⌊a, b⌋.

Lemma 2. Let Y ∼ SMSN(µ, σ2, λ;H). Then, the cdf of Y can be written in the following way:

FSMSN (y | µ, σ2, λ ; H) =

∫ ∞

0

2Φ2

(
y(u)∗|µ∗,Σ

)
dH(u), (6)

where

y(u)∗ = (κ(u)−1/2y, 0)⊤, µ∗ = (µ, 0)⊤, Σ =

(
σ2 −δσ
−δσ 1

)
(7)

and Φm(· | µ0,Σ0) denotes the cdf of the m−variate normal distribution with mean vector µ0 and co-
variance matrix Σ0.

Proof. See Appendix 1 in Massuia et al. (2015).
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2.2. Particular cases of SMSN distributions.

Although we can deal with any κ(·) function, we restrict our attention to the case where κ(u) = 1/u,

since it leads to good mathematical properties. Moreover, the scale factor U can be discrete or continuous

and the form of the SMSN distribution is determined by its distribution. We take into account four

members of SMSN class: skew�normal, skew�t, skew�slash and skew contaminated normal distributions.

For each speci�c SMSN distribution described below, we compute its cdf, which is useful to evaluate the

likelihood function related to CR models.

• The skew�t distribution. Denoted by Y ∼ ST
(
µ, σ2, λ; ν

)
, this case arises when we consider U ∼

Gamma(ν/2, ν/2) in De�nition 2. Thus, the density of Y takes the form

fST (y|µ, σ2, λ; ν) =
2 Γ(ν+1

2 )

Γ( ν2 )
√
πνσ

(
1 +

d(y)2

ν

)− ν+1
2

T1

(
λ d(y)

√
ν + 1

ν + d(y)2
| 0, 1, ν + 1

)
, y ∈ R,

(8)

where d(y) = (y−µ)/σ. A particular case of the skew-t distribution is the skew�Cauchy distribution,

when ν = 1. Also, when ν → ∞, we get the skew-normal distribution as the limiting case.

Using Lemma 2, we obtain the following expression for the cdf of Y :

FST (y | µ, σ2, λ ; ν) = 2 T2 (y(u)
∗ | µ∗,Σ, ν) , (9)

where y(u)∗, µ∗ and Σ are as in (7) and Tm (·| µ0,Σ0, ν) represents the cdf of the m-variate

Student-t distribution with location vector µ0, scale matrix Σ0 and ν degrees of freedom. The

proof of these results are given in Massuia et al. (2015).

• The skew�slash distribution. Denoted by Y ∼ SSL(µ, σ2, λ; ν), in this case we consider U ∼

Beta(ν, 1) with ν > 0 in De�nition 2. The density of Y is given by

fSSL(y|µ, σ2, λ; ν) = 2ν

∫ 1

0

uν−1ϕ(y|µ, u−1σ2)Φ(u1/2A(y))du, y ∈ R, (10)

where A(y) = λ(y − µ)/σ. The cdf of the skew-slash distribution does not have a closed form

expression. However, using Lemma 2, we can write it in terms of the following integral, which can

be approximated by numerical methods:

FSSL(y|µ, σ2, λ; ν) =

∫ ∞

0

2νΦ2

(
y(u)∗|µ∗,Σ

)
uν−1 du, (11)

where y(u)∗, µ∗ and Σ are as in (7).

• The skew-contaminated normal distribution. Denoted by Y ∼ SCN(µ, σ2, λ; (ν, γ)), here U is a

discrete random variable taking one of two states of ν = (ν, γ)⊤. In this case the pdf of U is given

by

U =

 γ with probability ν;

1 with probability 1− ν.
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It follows immediately that

fSCN (y|µ, σ2, λ;ν) = 2{νϕ(y|µ, γ−1σ2)Φ(γ1/2A(y)) + (1− ν)ϕ(y|µ, σ2)Φ(A(y))} (12)

and

FSCN (y|µ, σ2, λ;ν) = 2{νΦ2

(
γ1/2y∗|µ∗,Σ

)
+ (1− ν)Φ2

(
y∗|µ∗,Σ

)
}, (13)

where A(y) = λ(y − µ)/σ.

• The skew-normal distribution. This distribution is obtained when U = 1 (a degenerated random

variable) in De�nition 2. The density of Y was de�ned in (1) and clearly, from Lemma 2, the cdf

of Y is given by

F (y) = 2Φ2

(
y∗|µ∗,Σ

)
, (14)

where y∗ = (y, 0)⊤ and µ∗ and Σ are as in (7).

In Table 1, we present the expected values km = E[U−m/2] for all the SMSN distributions discussed

above, which are useful to de�ne the SMSN-CR model.

Table 1: km = E[U−m/2] for di�erent SMSN models.

Model km

SN 1

ST

(
ν
2

)m/2 Γ( ν−m
2 )

Γ(ν/2)

SSL
2ν

ν−m/2

SCN
ν

γm/2 + 1− ν

2.3. Algorithms for ML estimation

In models with non-observed or incomplete data, the EM algorithm is a very popular iterative op-

timization strategy commonly used. This algorithm has many attractive features such as numerical

stability and simplicity of implementation, and its memory requirements are quite reasonable (Couvreur,

1996). Letting ycomp = (ym,yo) the complete data vector, where ym represents the missing data and

yo the observed data respectively and ℓcomp(θ|ycomp) the complete data log-likelihood function, then the

EM-algorithm proceeds in two steps:

• E-step: Let θ̂
(j)

be the current j−th step estimate of θ. By using the property of conditional

expectation, we can compute the Q(θ|θ̂
(j)

) function by

Q(θ|θ̂
(j)

) = E

[
ℓcomp(θ|ycomp)|yo, θ̂

(j)
]
. (15)

• M-step: Maximize Q(θ|θ̂
(j)

) with respect to θ, obtaining θ̂
(j+1)

.
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As mentioned by Meza et al. (2012), each iteration of the EM algorithm increases the likelihood function

ℓ(θ|yo) and the EM sequence θ(j) converges to a stationary point of the observed likelihood under mild

regularity conditions (for more details see Wu (1983) and Vaida (2005)).

For cases in which the E-step has no analytic form, Wei and Tanner (1990) proposed the Monte

Carlo EM (MCEM) algorithm, in which the E-step is replaced by a Monte Carlo approximation based

on a large number of independent simulations of the missing data. In order to reduce the number of

required simulations compared to the MCEM algorithm, Delyon et al. (1999) proposed the stochastic

approximation version of the EM algorithm, the so-called SAEM algorithm, which consists of replacing

the E-step by a stochastic approximation, obtained using simulated data, while the M-step is unchanged.

The SAEM algorithm consists, at each iteration, of successively simulating the missing data with the

conditional distribution, and updating the unknown parameters of the model. Thus, the j−th iteration

of SAEM algorithm consists of the following steps:

• S-step: Draw the missing data ym(j) with the conditional distribution p(ym|yo, θ̂
(j−1)

).

• AE-step: Update Q(θ|θ̂
(j)

) according to

Q(θ|θ̂
(j)

) ≈ Q(θ|θ̂
(j−1)

) + γj

[
1

m

m∑
ℓ=1

ℓcomp(θ|yo,ym(j))−Q(θ|θ̂
(j−1)

)

]
. (16)

• M-step: Maximize Q(θ|θ̂
(j)

) with respect to θ obtaining θ̂
(j+1)

,

where γj is a decreasing sequence of positive numbers such that

∞∑
j=1

γj = ∞ and

∞∑
j=1

γ2j <∞, (17)

as presented by Kuhn and Lavielle (2004).

Thus, the SAEM algorithm performs a Monte Carlo E-step, like MCEM, but with a small and �xed

Monte Carlo sample sizes (m ≤ 20). This is possible because unlike the traditional EM algorithm and its

variants, the SAEM algorithm uses not only the current simulation of the missing data at the j−iteration,

denoted by ym, but also some or all previous simulations, where this `memory' property is set by the

smoothing parameter γj .

Note, in Equation (16), that sequence γj has a strong impact on the speed of convergence of the

algorithm. Thus, if the smoothing parameter γj is equal to 1 for all j, the SAEM algorithm will have

`no memory', and will be equivalent to the MCEM algorithm. The SAEM with no memory will converge

quickly (convergence in distribution) to a solution neighborhood, but the algorithm with memory will

converge slowly (almost sure convergence) to the ML solution. As suggested by Galarza et al. (2015), we

use the following choice of the smoothing parameter:

γj =

1, for 1 ≤ j ≤ cS,

1
j−cS , for cS + 1 ≤ j ≤ S,
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where S is the maximum number of iterations, and c a cuto� point (0 ≤ c ≤ 1) that determines the

percentage of initial iterations with no memory. For example, if c = 0, the algorithm will have memory

for all iterations, and hence will converge slowly to the ML estimates. If c = 1, the algorithm will have no

memory, and so will converge quickly to a solution neighborhood. For the �rst case, S would need to be

large in order to achieve the ML estimates. For the second, the algorithm will yield a Markov Chain where,

after applying a burn-in and thinning, the mean of the chain observations can be a reasonable estimate.

A number c between 0 and 1 (0 < c < 1) will assure an initial convergence in distribution to a solution

neighborhood for the �rst cS iterations and an almost sure convergence for the rest of the iterations.

Hence, this combination will lead to a fast algorithm with good estimates. To implement SAEM, the user

must �x several constants matching the number of total iterations S and the cuto� point c that de�nes

the start of the smoothing step of the SAEM algorithm. However, those parameters will vary depending

of the model and the data. To determinate those constants, a graphical approach is recommended to

monitor the convergence of the estimates for all the parameters, and if possible, to monitor the di�erence

(relative di�erence) between two successive evaluations of the log-likelihood ℓ(θ|yo), given by:

||ℓ(θ(j+1)|yo)− ℓ(θ(j)|yo)|| or ||ℓ(θ(j+1)|yo)/ℓ(θ(j)|yo)− 1||,

respectively.

3. The SMSN censored linear regression model

3.1. Model speci�cation

The SMSN-CR model that we are going to discuss is de�ned by:

Yi = x⊤
i β + εi, i = 1, 2, . . . , n, (18)

where β = (β1, . . . , βp)
⊤ is a vector of regression parameters, Yi is a response variable and xi =

(xi1, . . . , xip)
⊤ is a vector of explanatory variables for subject i.

In this work, we assume that

εi ∼ SMSN

(
−
√

2

π
k1∆, σ

2, λ;H

)
, i = 1, . . . , n, (19)

are independent random variables. The value of the location parameter, −
√

2
πk1∆, of εi is chosen in

order to obtain E[εi] = 0, as in the normal model. For more details, see Lemma 1 in Basso et al. (2010).

Thus, when the moments exist, we have

Yi ∼ SMSN

(
x⊤
i β −

√
2

π
k1∆, σ

2, λ;H

)
,

where E[Yi] = x⊤
i β and V ar[Yi] = k2σ

2 − 2k21∆
2

π
, for i = 1, . . . , n. The values of k1 and k2 are given

in Table 1, for particular cases of SMSN distributions.
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In this work we are interested in the situation in which the response variable is not fully observed

for all subjects. Thus, for the i−th subject and assuming left-censoring, Yi is a latent variable and the

observe data (Vi, ρi) is of the form

Vi =

 ci if ρi = 1 (i.e. Yi ≤ ci);

Yi if ρi = 0 (i.e. Yi > ci),
(20)

for some known threshold point ci, i = 1, 2, . . . , n.

The SMSN-CRmodel is de�ned by combining (18)�(20). The log-likelihood function of θ =
(
β⊤, σ2, λ, ν

)⊤
given the observed data (v,ρ), is

ℓ(θ|v,ρ) = log

{
n∏

i=1

[
FSMSN

(
vi − x⊤

i β

σ
|θ;H

)]ρi

[fSMSN (vi|θ;H)]
1−ρi

}
, (21)

where ρ = (ρ1, ρ2, . . . , ρn) and v = (v1, v2, . . . , vn) is the observed sample of V = (V1, V2, . . . , Vn). Thus,

ρi = 1, with 0 indicating whether the i−th observation is censored, i.e. Yi ≤ ci, or not respectively.

fSMSN (·|θ;H) and FSMSN (·|θ;H) represent the pdf and cdf of the SMSN class, respectively.

For simplicity, we will assume the data are left censored, and develop the SAEM algorithm for ML

estimation. Extensions, to right censored data are immediate.

3.2. ML estimation via the SAEM algorithm

In this section we consider the ML estimation of the parameters in the SMSN-CR models introduced

in Section 2.3. In particular, we show how to implement the SAEM algorithm for the particular cases of

the SMSN class, that is, the SN, ST, SSL and SCN distributions.

Let ω = (β⊤,∆, τ, ν)⊤ be the vector of parameters in focus, which has a one-to-one correspondence

with the original vector of parameters θ =
(
β⊤, σ2, λ, ν

)⊤
, since

∆ = σ
λ√
λ2 + 1

= σδ and τ =
(
1− δ2

)
σ2 =

σ2

λ2 + 1
,

we can obtain σ2 and λ from ∆ and τ considering

σ2 = τ +∆2 and λ = ∆/
√
τ . (22)

We observe that a useful straightforward result, used by Basso et al. (2010) and Massuia et al. (2015), is

that the conditional distribution of Ti given yi and ui is TN(µTi −
√

2
πk1, u

−1
i M2

T ; ⌊−
√

2
πk1,∞⌋), with

µTi =
∆

∆2 + τ
(yi − x⊤

i β) and M2
T =

τ

∆2 + τ
. (23)

In order to implement the SAEM algorithm, we consider a data augmentation scheme that consists of

assuming that the latent variables (missing data) in the model, given by the vector of censored responses

Y = (y1, y2, . . . , yn)
⊤, the vector t = (t1, t2, . . . , tn)

⊤ and u = (u1, u2, . . . , un)
⊤ - see representation (4) -

can be observed. Thus, considering the observed data (V,ρ) and the latent variables (Y, t,u), we de�ne
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the complete data by Ycomp = (V⊤,ρ⊤,Y⊤, t⊤,u⊤)⊤. Then, it is easy to derive the complete data

log-likelihood, de�ned by ℓcomp(ω|Ycomp), using the representation (5) as:

ℓcomp(ω|Ycomp) ∝ cte− n

2
log τ − 1

2τ

n∑
i=1

ui(yi − x⊤
i β −∆ti)

2 +
n∑

i=1

log h(ui|ν), (24)

where cte is a constant that is independent of ω and h(·|ν) is the pdf of the random variable U . In what

follows the superscript (j) indicates the estimate of the related parameter at stage j of the algorithm.

Thus, we have:

• E-step: Given the current estimate ω(j) = (β(j)⊤,∆(j), τ (j), ν(j))⊤ at the j−th iteration, we obtain

the conditional expectation of the complete data log-likelihood function (Q-function), which is given

by

Q(ω|ω(j)) = E
[
ℓcomp(ω|Ycomp)|V,ρ,ω(j)

]
= cte− n

2
log(τ)− 1

2τ

n∑
i=1

[
E02i(ω(j))− 2E01i(ω(j))x⊤

i β + E00i(ω(j))(x⊤
i β)

2

− 2∆E11i(ω(j)) + 2∆E10i(ω(j))x⊤
i β +∆2E20i(ω(j))

]
+ E

[
log{h(Ui|ν)}|Vi, ρi,ω(j)

]
.

Observe that the expression of the Q-function is completely determined by the knowledge of the

following expectations:

Ersi(ω(j)) = E[UiT
r
i Y

s
i |Vi, ρi,ω(j)] for r, s = 0, 1, 2,

as well as

E[log{h(Ui|ν)}|Vi, ρi].

As presented by Basso et al. (2010), considering known properties of conditional expectation and

Equation (23), we obtain

E10i(ω(j)) = E00i(ω(j))µ
(j)
Ti

+M
(j)
T ψ

(j)
i , (25)

E20i(ω(j)) = E00i(ω(j))µ
2(j)
Ti

+M
2(j)
T +M

(j)
T µ

(j)
Ti
ψ
(j)
i , (26)

where

ψ
(j)
i = E

[
UiWΦ

(
Uiµ

(j)
Ti

M
(j)
T

)
|Vi, ρi,ω(j)

]
and WΦ (a) =

ϕ(a)

Φ(a)
for a ∈ R.

Thus, at each step, to compute Ersi(ω(j)) we need to obtain the conditional expectations E00i(ω(j))

and ψ
(j)
i for the di�erent SMSN distributions considering two di�erent situations:

a) For an uncensored observation i:

In this case we have that ρi = 0, thus Vi = Yi ∼ SMSN
(
x⊤
i β −

√
2
πk1∆, τ +∆2, λ;H

)
and,

therefore,

Ersi(ω(j)) = ysi Er0i(ω(j)), (27)

where Er0i(ω(j)) can be obtained using equations (25)-(26) and the results given by Basso

et al. (2010). Thus, for example,

10



∗ For the skew-t case

E00i(ω(j)) =
22νν

(j)/2Γ
(

ν(j)+3
2

)
(ν(j) + d(j)(yi))

− ν(j)+3
2

fST (yi)Γ
(

ν(j)

2

)√
π(τ (j) +∆2(j))1/2

×T

(√
ν(j) + 3

ν(j) + d(j)(yi)
A

∗(j)
i ; ν(j) + 3

)
,

ψ
(j)
i =

2Γ(ν
(j)+2
2 )νν

(j)/2(ν(j) + d(j)(yi) +A
2∗(j)
i )−

ν(j)+2
2

fST (yi)Γ
(

ν(j)

2

)
π(τ (j) +∆2(j))1/2

,

as de�ned in (8), fST (·) represents the pdf of skew-t distribution and T (·; ν) is the cdf of

the standard Student-t distribution.

∗ For the skew-slash case

E00i(ω(j)) =

ν(j)2ν
(j)+2Γ

(
2ν(j)+3

2

)
P1

(
2ν(j) + 3

2
,
d(j)(yi)

2

)
d(j)(yi)

− 2ν(j)+3
2

fSSL(yi)
√
π(τ (j) +∆2(j))1/2

×E
[
Φ(S

(j)1/2
i A

∗(j)
i )

]
,

ψ
(j)
i =

ν(j)2ν
(j)+1Γ

(
2ν+2

2

)
fSSL(yi)π(τ (j) +∆2(j))1/2

(
d(j)(yi) +A

2∗(j)
i

)− 2ν(j)+2
2

×P1

(
2ν(j) + 2

2
,
d(j)(yi) +A

2∗(j)
i

2

)
,

where S
(j)
i ∼ Gamma(

2ν(j) + 3

2
,
d(j)(yi)

2
)I(0,1) is a truncated gamma distribution on

(0, 1), with the parameter values in parentheses before truncation and Px(a, b) denotes

the cdf of the Gamma(a, b) evaluated at x . As de�ned in (10), fSSL(·) represents a

density of skew-slash distribution.

∗ For the skew contaminated normal case

E00i(ω(j)) =
2

fSCN (yi)

{
ν(j)γ(j)ϕ

(
yi;µ

∗(j), γ−1(j)(τ (j) +∆2(j))
)
Φ
(
γ1/2A

∗(j)
i

)
+(1− ν(j))ϕ

(
yi;µ

∗(j), τ (j) +∆2(j)
)
Φ
(
A

∗(j)
i

)}
ψ
(j)
i =

2

fSCN (yi)

{
ν(j)γ(j)ϕ

(
yi;µ

∗(j), γ−1(j)(τ (j) +∆2(j))
)
Φ
(
γ1/2A

∗(j)
i

)
+(1− ν(j))ϕ

(
yi;µ

∗(j), τ (j) +∆2(j)
)
ϕ
(
A

∗(j)
i

)}
,

where fSCN (·) represents the pdf of the skew contaminated normal distribution, as de�ned

in (12).

In all cases described before, µ∗(j) = x⊤
i β

(j) −
√

2
πk1∆

(j), A∗(j) =
µ
(j)
Ti

M
(j)
T

and d(j)(yi) =

(yi−µ∗(j))√
τ(j)+∆2(j)

represents the Mahalanobis distance. Thus, in each step, the conditional expecta-

tions E00i(ω(j)) and ψ
(j)
i can be easily obtained.

For the skew�t and skew contaminated normal distributions we have computationally attractive

11



expressions that can be easily implemented. However, this is not the case for the skew�slash

one, where Monte Carlo integration can be employed, as suggested by Basso et al. (2010) and

Lachos et al. (2010).

b) For a censored observation i:

In this case, we have that ρi = 1, i.e. Yi ≤ ci, therefore

Ersi
(
ω(j)

)
= E[UiT

r
i Y

s
i |Vi, Yi ≤ ci,ω

(j)]with r, s = 0, 1, 2. (28)

As this conditional expectation does not have closed form, we need to introduce two interme-

diate steps in order to replace the E-step by a stochastic approximation using simulated data.

Thus, the iteration j consists of the following steps:

∗ S-step (Sampling)

Let Y(c) =
(
Y

(c)
1 , Y

(c)
2 , . . . , Y

(c)
nc

)
the vector of nc censored cases, where Y

(c)
i is generated

from TSMSN
(
x⊤
i β −

√
2
πk1∆, τ +∆2, λ;H, ⌊−∞, ci⌋

)
for i = 1, . . . , nc. Thus, the new

vector of observations Y(l,j) = (Y
(l,j)
i1 , . . . , Y

(l,j)
inc , Ync

i+1, . . . , Yn) is a sample generated

for the nc censored cases and the observed values (uncensored cases), for l = 1, . . . ,M.

Subsection 3.3 describes the details of the methods used to generate from the random

variable Y(c).

∗ AE-step (Approximation Expectation)

Since we have the sequence Y(j,l), at the j-th iteration, considering equations (25)-(26)

and the results given in Basso et al. (2010), we replace the conditional expectations in

(27) by the following stochastic approximations:

Ersi
(
ω(j)

)
= Ersi(ω(j−1)) + γj

[
1

m

m∑
l=1

E[UiT
r
i Y

s(l,j)
i |Vi, ρi,ω(j)]− Ersi(ω(j−1))

]
,

for r, s = 0, 1, 2.

An advantage of the SAEM algorithm is that even though it performs a Monte Carlo E-step, it

requires a small and �xed Monte Carlo sample size, making it much faster than MCEM. Some

authors claim that m = 10 is large enough, but to be more conservative, we chose m = 20.

• CM-step: Maximize Q(ω|ω(j)) with respect to ω obtaining ω(j+1), which leads to the following

expressions:

β(j+1) =

(
n∑

i=1

E00i(ω(j))(xix
⊤
i )

)−1 [ n∑
i=1

xiE01i(ω(j))−∆xiE10i(ω(j))

]
;

∆(j+1) =
E11i(ω(j))− E10i(ω(j))(x⊤

i β
(j+1))

E20i(ω(j))
;

τ (j+1) =
1

n

(
n∑

i=1

[
E02i(ω(j))− 2E01i(ω(j))(x⊤

i β
(j+1)) + E00i(ω(j))(x⊤

i β
(j+1))2 ;

− 2∆(j+1)E11i(ω(j)) + 2∆(j+1)E10i(ω(j))(x⊤
i β

(j+1)) + (∆(j+1))2E20i(ω(j))
])
.

12



• CML-step: We estimates ν by maximizing the actual marginal log-likelihood function, obtaining

ν(j+1) = argmaxν

{
n∑

i=1

log [FSMSN (vi|θ;H)]
ρi +

n∑
i=1

log [fSMSN (vi|θ;H)]
1−ρi

}
.

Note that σ2(j+1) and λ(j+1) can be recovered using (22). The more e�cient CML-step can be easily

accomplished by using, for instance, the optim routine in the R software (R Development Core Team,

2015).

Thus, considering θ(j+1) =
(
β(j+1)⊤, σ2(j+1), λ(j+1), ν(j+1)

)⊤
, this process is iterated until some distance

involving two successive evaluations of the actual log-likelihood ℓ(θ|yobs), like

||ℓ(θ(j+1)|yobs)− ℓ(θ(j)|yobs)|| or ||ℓ(θ(j+1)|yobs)/ℓ(θ
(j)|yobs)− 1||,

is small enough. We have adopted this strategy to update the estimate of ν, by direct maximization of

the marginal log-likelihood, circumventing the computation of Eθ(j) [log{h(Ui|ν)}|yobsi ].

In order to make our proposed algorithm more informative for the reader, in Figure 1 we present a

�ow diagram, which reports all the steps needed to implement the SAEM algorithm.

3.3. Computational aspects

The convergence of the SAEM algorithm is ensured by a careful choice of the simulation data method.

Thus, in this subsection, we describe two simulation methods to generate random samples from the

random variable Y ∼ TSMSN(µ, σ2, λ;H, ⌊a, b⌋). We concentrate on the truncated skew normal (TSN),

truncated skew-t (TST), truncated skew slash (TSSL) and truncated skew contaminated normal (TSCN)

distributions.

We use the sampling/importance resampling method (Method 1), proposed by Rubin (1987) and

Rubin et al. (1988), to generate samples from the TSN and TST models. For the TSS and TSCN models

we use the stochastic representation of a SMSN random variable, given in Lemma 1 (Method 2). In the

following, we present a brief description of those two methods:

• Method 1

The sampling/importance resampling (SIR) method is useful to generate an approximate inde-

pendent and identically distributed (i.i.d.) sample of size m, from the target density f(y) where

y ∈ SY ⊆ R. Thus, let g(y) a proposal density with the same support SY . The method consists of

two steps:

� Step 1.(Sampling) Generate a random sample Y1, Y2, · · · , YJ from g(y) and construct weights

W (Yj) =
f(Yj)

g(Yj)
, j = 1, . . . , J

and probabilities

πj =
W (Yj)∑J
j=1W (Yj)

, j = 1, . . . , J.
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Start

precision; Data obs (V,ρ)

V = (V1, V2, . . . , Vn)

ρ = (ρ1, ρ2, . . . , ρn)

Initial Values

ω̂o = (β⊤o,∆o, τo, νo)⊤

criterion ← 1

j ← 0

i← 0

ω̂
∗ ← ω̂

o

Q(ω)← 0

precision < criterionPrint θ̂
∗

End

Define

Ycomp = (V, ρ,Y, t,u)

ℓcomp(ω|Ycomp)

i← i+ 1

yi is censored?

or

ρi = 1?

E-Step

Compute Ersi(ω
(j))

Q(ω|ω(j))i

Update

Q(ω)← Q(ω) + Q(ω|ω(j))i

S-Step

Draw Yi from f(·|Vi, ρi, ω̂
(j))

AE-Step

Compute Q(ω|ω̂(j))

Update

Q(ω)← Q(ω) + Q(ω|ω̂(j))i

i = n?

M-Step

Maximize Q(ω) obtaining ω̂(j+1)

ω̂
∗ ← ω̂

(j+1)

Compute θ̂
∗

and θ̂ where

θ̂
∗
=

(
β̂

⊤∗
, σ̂2∗, λ̂∗, ν̂∗

)⊤

σ̂2∗ = τ̂∗ + ∆̂2∗

λ̂∗ = ∆̂∗
√

τ̂∗

criterion ← ||ℓ(θ̂
∗

|yo)− ℓ(θ̂|yo)||

j ← j + 1

no

yes

no yes

yes

no

Figure 1: Flow diagram of the SAEM algorithm.

� Step 2.(Importance resampling) Draw m values (m << J) Y ∗
1 , ..., Y

∗
m from the J values

Y1, Y2, . . . , YJ with respective probabilities π1, π2, . . . πJ . In practice, Rubin (1987) suggested

J/m = 20.

For the TSNmodel, the target density f(·) is a truncated skew normal distribution TSN
(
µ, σ2, λ; ⌊a, b⌋

)
and as proposal density g(·), we utilize truncated normal distribution, TN

(
µ, σ2; ⌊a, b⌋

)
. For TST

model, the target density f(·) is a truncated skew-t distribution TST
(
µ, σ2, λ, ν; ⌊a, b⌋

)
and as the

proposal density g(·), we utilize the truncated t distribution, Tt
(
µ, σ2, ν; ⌊a, b⌋

)
.

• Method 2

In this case, we need to generate samples from the random variable Y ∼ TSMSN(µ, σ2, λ;H, ⌊a, b⌋).
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Then, since U is a positive random variable, we have that

a < Y < b,

which implies

(a− µ)U1/2 < (Y − µ)U1/2 < (b− µ)U1/2.

Considering the stochastic representation given in (2), we have that Z = (Y − µ)U1/2, where

Z ∼ SN(0, σ2, λ) . Thus,

(a− µ)U1/2 < Z < (b− µ)U1/2.

Therefore, the algorithm to generate random samples of TSSL and TSCN models is as follows:

� Step 1. Generate a random sample U1, U2, . . . , Um from H( · |ν).

� Step 2. Generate a random sample Z1, Z2, . . . , Zm from TSN(0, σ2, λ; [γ1, γ2]), where γ1 =

(a− µ)U1/2 and γ2 = (b− µ)U1/2, using Method 1.

� Step 3. Using the stochastic representation given in (2), set Y = µ+ U1/2Z.

Consequently, we draw y
(j)
i from f(yi|ω(j), Vi, ρi) in the S-step.

3.4. Model selection

Because there is no universal criterion for mixture model selection, we chose three criteria to compare

the models considered in this work. These are the Akaike information criterion (AIC) (Akaike, 1974),

the Bayesian information criterion (BIC) (Schwarz, 1978) and the e�cient determination criterion (EDC)

(Bai et al., 1989). Like the more popular AIC and BIC criteria, EDC has the form

−2ℓ(θ̂) + ρcn,

where ℓ(θ) is the actual log-likelihood, ρ is the number of free parameters that have to be estimated in the

model and the penalty term cn is a convenient sequence of positive numbers. Here, we use cn = 0.2
√
n,

a proposal that was considered in Basso et al. (2010) and Cabral et al. (2012). We have cn = 2 for AIC,

cn = log n for BIC, where n is the sample size.

4. Approximated standard errors

Standard errors of the ML estimates can be approximated by the inverse of the observed information

matrix, but there is generally no closed form. Thus, we consider the same strategy used by Meilijson

(1989), Lin (2010) and Garay et al. (2015b) to get approximate standard errors of the parameter esti-

mates based on the empirical information matrix.

Let (V,ρ) be the vector of observed data. So, considering θ =
(
β, σ2, λ,ν

)
, Ycomp = (V⊤,ρ⊤,Y⊤, t⊤,u⊤)⊤

and relations described in the Equation (22), the empirical information matrix is de�ned as

Ie (θ|V,ρ) =
n∑

i=1

s (Vi, ρi|θ) s⊤ (Vi, ρi|θ)−
1

n
S (V,ρ|θ)S⊤ (V,ρ|θ) ,
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where S⊤ (V,ρ|θ) =
∑n

i=1 s (Vi, ρi|θ). It is noted from the result of Louis (1982) that, the individual

score can be determined as

s (Vi, ρi|θ) =
∂ℓ(θ|Vi, ρi)

∂θ
= E

[
∂ℓc(θ|Ycompi

)

∂θ
|Vi, ρi,θ

]
. (29)

Thus, substituting the ML estimates of θ in (29), the empirical information matrix Ie (θ|V,ρ) is reduced

to

Ie

(
θ̂|V,ρ

)
=

n∑
i=1

ŝiŝ
⊤
i , (30)

where ŝi =
(
ŝβi

, ŝσ2
i
, ŝλi

, ŝνi

)
is an individual score vector and

ŝβi
= E

[
∂ℓc(θ|Ycompi

)

∂β
|Vi, ρi, θ̂

]
=

1 + λ̂2

σ̂2

(
xiE01i(θ̂)− E00i(θ̂)xix

⊤
i β̂ − σ̂

λ̂√
1 + λ̂2

xiE10i(θ̂)

)
,

ŝσ2
i

= E

[
∂ℓc(θ|Ycompi

)

∂σ2
|Vi, ρi, θ̂

]
= − 1

2σ̂2
+

1 + λ̂2

2σ̂4

(
E02i(θ̂)− 2E01i(θ̂)x⊤

i β̂ + E00i(θ̂)(x⊤
i β̂)

2
)

−
λ̂

√
(1 + λ̂2)

2σ̂3

(
E11i(θ̂)− E10i(θ̂)x⊤

i β̂
)
,

ŝλi = E

[
∂ℓc(θ|Ycompi

)

∂λ
|Vi, ρi, θ̂

]
=

λ̂

1 + λ̂2
+

λ̂

σ̂2

(
E02i(θ̂)− 2E01i(θ̂)x⊤

i β̂ + E00i(θ̂)(x⊤
i β̂)

2
)

+
1 + 2λ̂2

σ̂
√

1 + λ̂2

(
E11i(θ̂)− E10i(θ̂)x⊤

i β̂
)
− λ̂E20i(θ̂),

ŝνi = E

[
∂ℓc(θ|Ycompi

)

∂ν
|Vi, ρi, θ̂

]
= E

[
∂ log (f(Ui|ν))

∂ν
|Vi, ρi, θ̂

]
,

where ℓc(θ|Ycompi
) is the log-likelihood formed from the single complete observation i and Ersi(ω(k)) =

E[UiT
r
i Y

s
i |Vi, ρi,ω(k)]. It is important to stress that the standard error of ν depends heavily on the

calculation of E
[
log (Ui) |yobsi , θ̂

]
, which relies on computationally intensive Monte Carlo integrations.

In our analysis, we focus solely on comparing the standard errors of β⊤, σ2 and λ.

5. Simulation studies

In order to examine the performance of our proposed models and algorithm, we present three simula-

tion studies. The �rst compare the performance of the estimates for SMSN-CR models in the presence of

outliers on the response variable. The second study shows that our proposed SAEM algorithm estimates

do provide good asymptotic properties. In the the third study we show the consistency of the approximate

standard errors for the ML estimates of parameters. All computational procedures were implemented us-

ing the R software (R Development Core Team, 2015). We performed all Monte Carlo simulation studies

considering the model SMSN-CR, de�ned by combining (18)�(20) where β⊤ = (β1, β2) = (1, 4), σ2 = 2,

λ = 4 and x⊤
i = (1, xi). The values xi, i = 1, . . . , n, were generated independently from a uniform

distribution on the interval (2,20) and those values were kept constant throughout the experiment. For

all simulation studies, were considered a random sample with censoring levels p = 0%, 8%, 20% and 35%

(i.e., 0%, 8%, 20% and 35% of the observations in each dataset were censored respectively). In addition,

we also choose the parameters m = 20, c = 0.3 and S = 400 for the SAEM implementation.
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5.1. Robustness of the SAEM estimates (Simulation study 1)

The purpose of this simulation study is to compare the performance of the estimates for some cen-

sored regression models in the presence of outliers on the response variable. We consider the di�erent

cases of the SMSN-CR models with �xed ν, i.e., SN-CR, ST-CR (ν = 3), SSL-CR (ν = 3) and SCN-CR

((ν, γ) = (0.1, 0.1)).

For this case, we generated 200 samples of size n = 300 under the SN-CRmodel with εi ∼ SN(−
√

2
πk1∆, σ

2, λ)

and four percent of left censored values for the response variable, in each sample. To assess how much

the SAEM estimates are in�uenced by the presence of outliers, we replaced the observation y150 by

y150(ϑ) = y150 + ϑ, with ϑ = 1, 2, . . . , 10. For each replication, we obtained the parameter estimates

with and without outliers, under the four SMSN-CR models. We are interested in evaluating the relative

change in the estimates as a ϑ function. Given θ = (β1, β2, σ
2, λ), the relative change is de�ned by

RC
(
θ̂i(ϑ)

)
=

∣∣∣∣∣∣
(
θ̂i(ϑ)− θ̂i

)
θ̂i

∣∣∣∣∣∣ ,
where θ̂i(ϑ) and θ̂i denote the SAEM estimates of θi with and without perturbation, respectively.

Figure 2 show the average values of the relative changes undergone by all the parameters, for the

censoring level of 8%. We note that for all parameters, the average relative changes suddenly increase

under SN-CR model as the ϑ value grows. In contrast, for the SMSN-CR models with heavy tails, namely

the ST-CR, SSL-CR and SCN-CR, the measures vary little, indicating they are more robust than the

SN-CR model in the ability to accommodate discrepant observations. We also conducted simulations

with three censoring rates (p = 0%, 20% and 35%), obtaining similar results, as shown in Figures 6, 7

and 8 in Appendix A.

5.2. Asymptotic properties (Simulation study 2)

In this simulation study, the main focus is to evaluate the �nite-sample performance of the parameter

estimates. To do so we generated left-censored samples from the SMSN-CR model with the di�erent

censoring levels p = 8%, 20% and 35% and sample sizes �xed at n = 50, 150, 300, 450, 600 and 750.

For each combination of sample size and censoring level, we generated 500 samples from the SMSN-

CR models, under four di�erent situations: SN-CR, ST-CR (ν = 3), SSL-CR (ν = 4) and SCN-CR

(ν⊤ = (0.1, 01)).

As in Garay et al. (2015b), to evaluate the estimates obtained by the proposed SAEM algorithm, we

compared the bias (Bias) and the mean square error (MSE) for each parameter over the 500 replicates.

They are de�ned as

Bias(θi) =
1

500

500∑
j=1

(θ̂
(j)
i − θi) and MSE(θi) =

1

500

500∑
j=1

(θ̂
(j)
i − θi)

2,

where θ̂
(j)
i is the estimate of θi from the j-th sample for j = 1, . . . , 500.

Analyzing �gures 3 and 4, for the censoring level p = 8%, it can be seen that the Bias and MSE

tend to zero in all SMSN-CR models when n increases. Thus, as a general rule the results indicate that
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Figure 2: Simulation study 1. Average relative changes on estimates for di�erent perturbations ϑ and censoring level p = 8%.

the ML estimates of the SMSN-CR models do provide good asymptotic properties. We also performed

simulations with two higher censoring rates (p = 20% and 35%) and the patterns of convergence still

behaved well (See Figures 9 - 12 given in Appendix B for more details).
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Figure 3: Simulation study 2. Bias of parameters β1, β2, σ2 and λ for SMSN models with level of censoring p = 8%.

18



Sample Sizes (n)

M
S

E

50 150 300 450 600 750

0.
00

0.
05

0.
10

0.
15

β1

SN
ST
SSL
SCN

Sample Sizes (n)

M
S

E

50 150 300 450 600 750

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

β2

SN
ST
SSL
SCN

Sample Sizes (n)

M
S

E

50 150 300 450 600 750

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

σ2

SN
ST
SSL
SCN

Sample Sizes (n)

M
S

E

50 150 300 450 600 750
0

20
40

60
80

λ

SN
ST
SSL
SCN

Figure 4: Simulation study 2. MSE of parameters β1, β2, σ2 and λ for SMSN models with level of censoring p = 8%.

5.3. Consistency of the estimates of the standard errors (Simulation study 3)

The design considered in this simulation study is the same as used in Subsection 5.1. Here, we

examine the consistency of the approximation method, suggested in Section 4, to get the standard errors

(SE) of ML estimates θ̂ = (β̂1, β̂2, σ̂2, λ̂) for the SMSN-CR models, considering four censoring levels

p = 0%, 8%, 20% and 35%.

We generated 500 random samples of size n = 450 for the di�erent SMSN-CR models: SN-CR, ST-

CR (ν = 3) , SSL-CR (ν = 4) and SCN-CR (ν⊤ = (0.1, 01)). For each sample, we obtained the ML

estimates of θ = (β1, β2, σ
2, λ), their SE using the technique proposed in Section 4 and the 95% normal

approximation con�dence intervals for each parameter, i.e., θ̂ ± 1.96SE.

Considering all the ML estimates obtained (across 500 samples), we computed:

• the Monte Carlo standard deviation of θ̂i, de�ned by

MC-Sd =

√√√√√ 1

499

 500∑
j=1

(
θ̂
(j)
i

)2
− 500

(
θ̂i

)2 where θ̂i =
1

500

500∑
j=1

θ̂
(j)
i ;

• the average values of the approximate standard errors of the SAEM estimates obtained through

the method described in Subsection 3.2 using the empirical information matrix, denoted by AV-SE,

and

• the percentage of times that the con�dence intervals cover the true value of the parameter (COV

MC).
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Table 2: Simulation study 3. Results based on 500 simulated samples. MC Sd, AVE SE and COV MC are the respective
average of the standard deviations, the average of the approximate standard error obtained through the information-based
method and the coverage probability from �tting SMSN-CR models under various levels of censoring proportion.

Cens. Level θ̂i
SN-CR ST-CR

MC-Sd AV-SE COV MC MC-Sd AV-SE COV MC

0%

β̂1 0.0897 0.0847 92.60% 0.1099 0.1126 95.40%

β̂2 0.0070 0.0066 92.80% 0.0072 0.0076 97.00%

σ̂2 0.1803 0.1828 95.40% 0.2422 0.2411 95.40%

λ̂ 0.7739 0.7590 95.60% 0.7978 0.7884 95.00%

8%

β̂1 0.0952 0.0981 96.00% 0.1331 0.1290 94.60%

β̂2 0.0076 0.0077 94.40% 0.0093 0.0089 93.80%

σ̂2 0.1878 0.1878 92.80% 0.2443 0.2484 95.60%

λ̂ 0.8127 0.7856 95.80% 0.8468 0.8460 95.00%

20%

β̂1 0.1319 0.1314 94.20% 0.1612 0.1562 94.00%

β̂2 0.0095 0.0096 95.00% 0.0106 0.0105 94.20%

σ̂2 0.1827 0.2035 97.60% 0.2902 0.2653 92.60%

λ̂ 0.7963 0.8822 97.60% 0.9836 0.9104 92.80%

35%

β̂1 0.1922 0.1881 94.60% 0.2452 0.2344 90.80%

β̂2 0.0134 0.0130 94.40% 0.0158 0.0153 93.40%

σ̂2 0.2185 0.2262 95.20% 0.2866 0.2835 93.40%

λ̂ 0.8434 0.9606 94.60% 0.7929 0.9635 92.20%

Cens. Level θ̂i
SCN-CR SSL-CR

MC-Sd AV-SE COV MC MC-Sd AV-SE COV MC

0%

β̂1 0.0982 0.0995 95.40% 0.1001 0.0953 92.80%

β̂2 0.0072 0.0074 96.40% 0.0076 0.0075 94.40%

σ̂2 0.2260 0.2184 94.40% 0.2030 0.1921 92.80%

λ̂ 0.8461 0.8028 95.00% 0.8115 0.7716 95.00%

8%

β̂1 0.1152 0.1151 93.80% 0.1188 0.1176 94.40%

β̂2 0.0088 0.0086 95.20% 0.0088 0.0088 93.20%

σ̂2 0.2251 0.2244 93.80% 0.1940 0.1988 95.60%

λ̂ 0.8343 0.8303 94.20% 0.7410 0.8023 96.60%

20%

β̂1 0.1372 0.1405 92.60% 0.1484 0.1523 94.80%

β̂2 0.0103 0.0102 93.20% 0.0105 0.0109 94.60%

σ̂2 0.2498 0.2431 95.80% 0.2080 0.2129 94.60%

λ̂ 0.8607 0.8978 95.20% 0.8307 0.8785 97.00%

35%

β̂1 0.2032 0.2122 88.20% 0.2037 0.2125 93.20%

β̂2 0.0139 0.0142 90.60% 0.0139 0.0145 93.40%

σ̂2 0.2657 0.2653 93.80% 0.2304 0.2354 93.20%

λ̂ 0.8156 0.9845 93.80% 0.8894 0.9914 96.40%

Table 2 shows that in general, the COV MC for the parameters is quite stable for the censoring levels

p = 0%, 8%, and 20%, but it tends to be lower than the nominal level (95%) when considering a high

level of censoring, say p = 35%. This table also provides the average values of the approximate standard

errors of the EM estimates obtained through the information-based method described in Subsection 3.2

(AV SE) and the Monte Carlo standard deviation (MC Sd) for the parameters. Table 2 also reveals

that the estimation method of the standard errors provides relatively close results for the SMSN models,

indicating that the proposed empirical information matrix( Equation 30) is reliable.
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6. Application

In this section we provide an application of the results derived in the previous sections using the data

described by Mroz (1987). The dataset consists of 753 married white women with ages between 30 and

60 years old in 1975, with 428 women who worked at some point during that year. The response variable

is the wage rate, which represents a measure of the wage of the housewife known as the average hourly

earnings. If the wage rates are set equal to zero, these wives did not work in 1975. Therefore, these

observations are considered left censored at zero. The variables involved in the study were:

• yi: de�ned as the average hourly earnings (wage rates);

• xi1: wife's age;

• xi2: wife's years of schooling;

• xi3: the number of children younger than six years old in the household;

• xi4: the number of children between the ages of six and nineteen.

These data were analyzed by Arellano-Valle et al. (2012) using the Student-t censored regression model;

by Garay et al. (2015b) considering SMN-CR models and, more recently by Massuia et al. (2015) to

evaluated the performance of the SMSN-CR models from a Bayesian perspective. Here, we revisit this

dataset in order to evaluate the performance of the proposed SAEM algorithm to obtain ML estimates.

Table 3 contains the ML estimates for the parameters of the four models, i.e., SN-CR, ST-CR, SSL-

CR and SCN-CR models, together with their corresponding standard errors calculated via the empirical

information matrix. For the ST and SSL models, the estimated value of ν is small, indicating the in

adequacy of the skew-normal (and normal) assumption for the wage rates dataset. Moreover, the results

obtained under SN-CR and ST-CR models are consistent with those presented in Massuia et al. (2015).

The SCN-CR and SSL-CR models presented estimates for λ closed to zero, indicating coherence with

the results presented in Garay et al. (2015b). Table 4 compares the �t of the four SMSN models using

the model selection criteria discussed in Subsection 3.4. Note that the SMSN distributions with heavy

tails have better �t than the SN model. Particularly, the ST distribution �ts the data better than the

other three distributions. The comparison process is conducted now considering the symmetric SMN

distributions (vide Garay et al. (2015b)) and we observe that according model selection criteria the ST-

CR model still presents a better overall �t than the other four models (see Table 5 given in Appendix

D).

In order to study departures from the error assumption as well as presence of outliers, we analyzed

the transformation of the martingale type residual (MT), denoted by rMTi
, proposed by Barros et al.

(2010) for censored models. These residuals are de�ned by

rMTi = sign(rMi)
√
−2[rMi + ρi log(ρi − rMi)], i = 1, . . . , n.
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Table 3: Wage rate data. Parameter estimates of the SMSN-CR models and SE for Wage rate data.

SN-CR ST-CR SCN-CR SSL-CR

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 -1.3355 1.7627 -4.1685 1.4392 -1.3291 1.5026 -1.3489 1.4221
β2 -0.1185 0.0272 -0.0722 0.0223 -0.1061 0.0229 -0.1053 0.0226
β3 0.6917 0.0809 0.6541 0.0576 0.6490 0.0611 0.6434 0.0620
β4 -3.2502 0.4345 -2.5956 0.3291 -3.0685 0.3642 -3.0480 0.3628
β5 -0.2602 0.1433 -0.2676 0.1136 -0.3016 0.1199 -0.2901 0.1176

σ2 32.8512 2.0202 19.4969 3.1730 11.8519 3.7339 6.7930 1.1830
λ 1.5454 0.4412 -1.6976 0.2942 0.1273 1.4542 -0.2144 0.3698
ν - - 2.5000 - 0.0537 - 1.45 -
γ - - - - 0.0645 - - -

Table 4: Wage rate data. Model selection criteria (values in bold correspond to the best model).

Criteria SN-CR ST-CR SCN-CR SSL-CR

log-likelihood -1470.617 -1410.583 -1430.992 -1435.426
AIC 2955.234 2837.166 2879.984 2884.852
BIC 2987.602 2874.159 2921.601 2917.220
EDC 2979.651 2865.071 2911.378 2909.269

where rMi = ρi+log(S(yi; θ̂)) is the martingale residual, with ρi = 0, 1 indicating whether the observation

is censored or not, respectively. S(yi, θ̂) is the SAEM estimate of the survival function of y � see more

details in Ortega et al. (2003) and Garay et al. (2015b). The normal probability plot of the MT residuals

with generated envelopes is presented in Figure 5. From this �gure, we note that the SMSN-CR models

with heavy tails present better �t than the SN-CR model.

7. Conclusions

We have proposed a linear regression models with censored responses based on scale mixtures of

skew-normal distributions, denoted by SMSN-CR, as a replacement for the conventional choice of normal

(or symmetric) distribution for censored linear models. Our results generalize the works of Barros et al.

(2010), Arellano-Valle et al. (2012), Massuia et al. (2014) and Garay et al. (2015b) from a frequentist

point of view. In the context of SMSN-CR models, a Bayesian analysis was developed recently by Massuia

et al. (2015). However, to the best of our knowledge, there are no previous studies of a likelihood based

perspective related to this topic.

In order to explore the performance of our proposed models and SAEM algorithm, we developed

three simulation studies. The study compared the performance of the estimates for SMSN-CR models

in the presence of outliers on the response variable. The second study showed that our proposed SAEM

algorithm estimates do provide good asymptotic properties. The third study showed the consistency of

the approximate of standard errors for the ML estimates of parameters. We also applied our method to

the wage rate dataset of Mroz (1987), in order to illustrate how the procedure developed can be used to
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Figure 5: Wage rate data. Envelopes of the MT residuals for the SMSN-CR models

evaluate model assumptions and obtain robust parameter estimates. As expected, our proposed SMSN-

CR with heavy tails models, as ST-CR, SSL-CR and SCN-CR models, present better results than the

SN-CR model. It is interesting to note that the ST-CR model still presents a better overall �t than the

symmetrical SMN-CR models.

Due to recent advances in computational technology, it is worth carrying out some extensions of the

current work, for example, diagnostics analysis in the SMSN-CR models or censored nonlinear regression

models (SMSN-NLCR) as in Garay et al. (2011). Another interesting topic for further research would be

to generalize our results considering irregularly observed longitudinal data using the SMSN multivariate

class of distributions, as in Garay et al. (2015a).
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Appendix A: Complementary results of the simulation study 1

In this appendix, we present the results of the simulation study 1 for di�erent levels of censoring:

p = 0%, 20% and 35%.
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Figure 6: Simulation study 1. Average relative changes on estimates for di�erent perturbations ϑ and censoring level p = 0%.
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Figure 7: Simulation study 1. Average relative changes on estimates for di�erent perturbations ϑ and censoring level
p = 20%.
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Figure 8: Simulation study 1. Average relative changes on estimates for di�erent perturbations ϑ and censoring level
p = 35%.
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Appendix B: Complementary results of the simulation study 2

Here we show the Bias and MSE of parameters θ, for the levels of censoring p = 20% and 35%,

respectively.
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Figure 9: Simulation study 2. Bias of parameters β1, β2, σ2 and λ for SMSN-models with level of censoring p = 20%.
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Figure 10: Simulation study 2. MSE of parameters β1, β2, σ2 and λ for SMSN-models with level of censoring p = 20%.
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Figure 11: Simulation study 2. Bias of parameters β1, β2, σ2 and λ for SMSN-models with level of censoring p = 35%.

Appendix C: Complementary results of the application

In this appendix, we describe the summary of convergence for the parameters, β, σ2, λ, ν, for the

SMSN-CR models. The vertical dashed line delimits the beginning of the almost sure convergence, as
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Figure 12: Simulation study 2. MSE of parameters β1, β2, σ2 and λ for SMSN-models with level of censoring p = 35%.
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Figure 13: Wage rate data. Graphical summary of convergence for the parameters from SN-CR model, m = 20, c = 0.35
and S = 400.
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Figure 14: Wage rate data. Graphical summary of convergence for the parameters from ST-CR model, m = 20, c = 0.40
and S = 400.
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Figure 15: Wage rate data. Graphical summary of convergence for the parameters from SCN-CR model, m = 20, c = 0.35
and S = 400.

Appendix D: Wage rate data under SMN-CR models

In this appendix, we present the comparison between the SMN-CR models, considering the wage rate

dataset.
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Figure 16: Wage rate data. Graphical summary of convergence for the parameters from SSL-CR model, m = 20, c = 0.30
and S = 300.

Table 5: Wage rate data. Values of some model selection criteria for SMN-CR models

Criteria N-CR T-CR CN-CR SL-CR

log-likelihood -1481.6550 -1440.1450 -1432.0850 -1436.2860
AIC 2975.3110 2894.2910 2880.1710 2886.5730
BIC 3003.0550 2926.6590 2917.1630 2918.9410
EDC 2996.2400 2918.7080 2908.0760 2910.9900
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