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Abstract

This paper develops a likelihood-based approach to anayaatile regression (QR)
models for continuous longitudinal data via the asymmadtaplace distribution (ALD).
Compared to the conventional mean regression approach,a@Rl@aracterize the entire
conditional distribution of the outcome variable and is enarbust to the presence of outliers
and misspecification of the error distribution. Exploititng nice hierarchical representation
of the ALD, our classical approach follows a Stochastic Apgnation of the EM (SAEM)
algorithm in deriving exact maximum likelihood estimatdgte fixed-effects and variance
components. We evaluate the finite sample performance afgoeithm and the asymptotic
properties of the ML estimates through empirical experiteemd applications to two real
life datasets. Our empirical results clearly indicate thatSAEM estimates outperforms the
estimates obtained via the combination of Gaussian quaérahd non-smooth optimization
routines of the Geraci (2014)'s approach in terms of stahdarors and mean square error.
The proposed SAEM algorithm is implemented in BhpackagejrLMM ()

Keywords:Asymmetric Laplace distribution; SAEM algorithmpackagejrLMM

1 Introduction

Linear mixed-effects models (LMM) are frequently used talgipe grouped/clustered data (such
as longitudinal data, repeated measures, and multileva) dacause of their ability to handle

within-subject correlations that characterizes groupsd @Pinheiro and Bates, 2000). Majority
of these LMMs estimate covariate effects on the responsegffira mean regression, controlling
for between-cluster heterogeneity via normally-distidalicluster-specific random effects and
random errors. However, this centrality-based inferéfraanework is often inadequate when the
conditional distribution of the response (conditional ba tandom terms) is skewed, multimodal,
or affected by atypical observations. In contrast, conddl quantile regression (QR) methods
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Koenker (2004, 2005) quantifying the entire conditionadtdbution of the outcome variable
were developed that can provide assessment of covariaetefit any arbitrary quantiles of
the outcome. In addition, QR methods do not impose any digidnal assumption on the error
terms, except that the error term has a zero conditionaltdge@aBecause of its popularity and the
flexibility it provides, standard QR methods are implemblgaia available software packages,
such as, the packagejuantreg.

Although QR was initially developed under a univariate feavork, the abundance of clus-
tered data in recent times led to its extensions into mixedetiog framework (classical, or
Bayesian) via either the distribution-free route (Lipgtzal., 1997; Galvao and Montes-Rojas,
2010; Galvao Jr, 2011; Fu and Wang, 2012), or the traditibkelihood-based route mostly us-
ing the ALD (Geraci and Bottai, 2007; Yuan and Yin, 2010; Gesaand Bottai, 2014). Among the
ALD-based models, Geraci and Bottai (2007) proposed a MOateo EM (MCEM)-based con-
ditional QR model for continuous responses with a subjpetgic random (univariate) intercept
to account for within-subject dependence in the contextioitudinal data. However, due to the
limitations of a simple random intercept model to accountiie between-cluster heterogeneity,
Geraci and Bottai (2014) extended it to a general linear tjeamixed effects regression model
(QR-LMM) with multiple random effects (both intercepts asidpes). However, instead of going
the MCEM route, the estimation of the fixed effects and theacance components were imple-
mented using an efficient combination of Gaussian quadrapproximations and non-smooth
optimization algorithms.

Although the literature on QR-LMM is now substantial, thare no studies conducting exact
inferences in the context of QR-LMM from a likelihood-bageelspective. In this paper, we
proceed to achieve that via a robust parametric ALD-based IRl where the full likelihood-
based implementation follows a stochastic version of the &f§brithm (SAEM) proposed by
Delyon et al. (1999) for maximum likelihood (ML) estimatioim contrast to the approxima-
tions proposed by Geraci and Bottai (2014). The SAEM algarihas been proved to be more
computationally efficient than the classical MCEM algamtkdue to the recycling of simulations
from one iteration to the next in the smoothing phase of tgerghm. Moreover, as pointed out
by Meza et al. (2012), the SAEM algorithm, unlike the MCEMneerges even in a typically
small simulation size. Recently, Kuhn and Lavielle (200%)wsed that the SAEM algorithm is
very efficient in computing the ML estimates in mixed effectsdels. Our empirical results us-
ing the SAEM are more efficient than the proposition of Geesnd Bottai (2014) for simulated
data. Furthermore, application of our method to two lordjital datasets is illustrated via the
packageyrLMM ().

The rest of the paper proceeds as follows. Section 2 presemis preliminaries, in particular
the connection between QR and ALD, and an outline of the EM&&EM algorithms. Section
3 develops the MCEM and the SAEM algorithms for a general LMWijle Section 4 outlines
the likelihood estimation and standard errors. Sectionesgmts simulation studies to compare
the finite sample performance of our proposed methods wélctimpeting Geraci and Bottai
(2014) method. Application of the SAEM method to two longinal datasets, one examining
cholesterol level and the other on orthodontic distance/tirare presented in Section 6. Finally,
Section 7 concludes, sketching some future research idinsct

2 Preliminaries

In this section, we provide some useful results on the ALD @& and outline the EM and
SAEM algorithms for ML estimation.



2.1 Connection between QR and ALD

Following Yu and Moyeed (2001), a random variable Y is dmsited as an ALD with location
parametey, scale parameter > 0 and skewness paramefee (0, 1), if its probability density
function (pdf) is given by

f(ylu,o,p) = p<10_ P) exp{ pp<y “)} (1)

wherepy(.) is the check (or loss) function defined py(u) = u(p—I{u < 0}), with I{.} the
usual indicator function. This distribution is denoted AkD(u, 0, p). It is easy to see that
W = pp(Y%"“‘) follows an exponential(1) distribution. Figure 1 plots tReD illustrating how
the skewness changes with altering choicegfdfor example, whep = 0.1, most of the mass
is concentrated around the right tail, while o= 0.5, both tails of the ALD have equal mass
and the distribution resemble the more common double expg@helistribution. In contrast to
the normal distribution with a quadratic term in the expdn#re ALD is linear in the exponent.
This results in a more peaked mode for the ALD together witbkdr tails. On the contrary,
the normal distribution has heavier shoulders compareth¢écd_D. The ALD abides by the
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Figure 1: Standard asymmetric Laplace density

following stochastic representation (Kotz et al., 2001 z#&loowski and Podgorski, 2000). Let
U ~exp(o) andZ ~ N(0,1) be two independent random variables. Thér; ALD(u, o, p) can
be represented as

YL 49U+ r17/0UZ, )

wheredp = p( p) andrp p( =k and2 denotes equality in distribution. This representation

is useful in obtaining the moment generating function (mgfd formulating the estimation
algorithm. From (2), the hierarchical representation efALD follows

YIU=u ~ N(u+98pu,150U),
U ~ expo). (3)



This representation will be useful for the implementatidrir@ EM algorithm. Moreover,
sinceY|U =u~ N(u+Jpu, Tgau), one can easily derive the pdf¥%f given by

fii0.p) = =z exp( X)), @
p 2

ly—H| 1 95 5(y)\ /2 :
whered(y) = A y= /3 (2+32) = 5% andA(y) = 2(7) Ky/2(8(y)y), with Ky (.), the
modified Bessel function of the third kind. It is easy to olveethat the conditional distribution
of U, givenY =y, isU|(Y =y) ~ GIG(%,é, y), whereGIG(v,a,b) is the Generalized Inverse
Gaussian (GIG) distribution (Barndorff-Nielsen and Sheaplh2001) with the pdf

(b/a)” 1 1.5 2
h(u|v,a,b) = 2K, b)u exp{ 2(a/u+bu)},u>0,veR,a,b>O.

The moments of) can be expressed as

E[UY = (g)k%,keﬂ% (5)

Some useful properties of the Bessel function of the thirdik{, (u) are: (i)Ky,(u) = K_y (u);
(i) Kys1(u) = Z—VKV<U)+KV_1( u); (iii) for non-negative integer, K, 1/5(u) = \/;exp( u)

S o % A special case iK; »(u) = \/;exp( u).

2.2 The EM and SAEM algorithms

In models with missing data, the EM algorithm (Dempster ¢tl@77) has established itself as the
most popular tool for obtaining the ML estimates of modelgpaeters. This iterative algorithm
maximizes the complete log-likelihood functidg(8; ycom) at each step, converging quickly to
a stationary point of the observed likeliho® 0; yops)) under mild regularity conditions (Wu,
1983; Vaida, 2005). The EM algorithm proceeds in two simf@es.
E-Step: Replace the observed likelihood by the complete likelihand compute its conditional
expectatiorQ(8(6®) = E{Kc(e; ycom)|§(k),yobs} , where8" is the estimate 08 at thek-th
iteration;

- ~(K), . . ~(k+1)
M-Step: MaximizeQ(6|6 ) with respect tdd to obtairf .

However, in some applications of the EM algorithm, the Epstannot be obtained analyt-
ically and has to be calculated using simulations. Wei anthéa (1990) proposed the Monte
Carlo EM (MCEM) algorithm in which the E-step is replaced bilante Carlo approximation
based on a large number of independent simulations of theimgislata. This simple solution
is infact computationally expensive, given the need to geeea large number of independent
simulations of the missing data for a good approximationusltin order to reduce the amount
of required simulations compared to the MCEM algorithm, 8&EM algorithm proposed by
Delyon et al. (1999) replaces the E-step of the EM algorithymabstochastic approximation
procedure, while the Maximization step remains unchandsekides having good theoretical
properties, the SAEM estimates the population parametensrately, converging to the global
maxima of the ML estimates under quite general conditioriag&onniére et al., 2010; Delyon
et al., 1999; Kuhn and Lavielle, 2004). At each iteratioe, 8AEM algorithm successively sim-
ulates missing data with the conditional distribution, apdates the unknown parameters of the

4



model. Thus, at iteratiok, the SAEM proceeds as follows:
E-Step:

e Simulation Draw (q(“¥)), ¢ = 1,...,mfrom the conditional distributiori (q|8<~1), y;).

e Stochastic Approximatiaripdate theQ(6|6¥) function as

m

~ e 1 I~ A(k—
Q(6]8™M) ~ Q(818k V) 4 5, a; 0e(8Yobs )18Y  yops—Q(018* )| (6)
=1

M-Step:

« Maximization Update8¥) asgk+1) — arg maxQ(6|6"),
0

wheredy is a smoothness parameter (Kuhn and Lavielle, 2004), i.@eceeasing sequence of
positive numbers such tha§_; & = « andy_; §? < . Note that, for the SAEM algorithm,
the E-Step coincides with the MCEM algorithm, however a $mainber of simulationsn (sug-
gested to ben < 20) is necessary. This is possible because unlike theitraditEM algorithm
and its variants, the SAEM algorithm uses not only the cursenulation of the missing data at
the iterationk denoted by(q'“¥), ¢ = 1,...,m but some or all previous simulations, where this
‘memory’ property is set by the smoothing parameier

Note, in equation (6), if the smoothing paramedgiis equal to 1 for alk, the SAEM algo-
rithm will have ‘no memory’, and will be equivalent to the M@Ealgorithm. The SAEM with
no memory will converge quickly (convergence in distrilbmdi to a solution neighbourhood,
however the algorithm with memory will converge slowly (alsh sure convergence) to the ML
solution. We suggested the following choice of the smoagiparameter:

d(_{l, for 1<k<cwW
- 1
oW for c(W+1<k<W

whereW is the maximum number of iterations, an@ cut point (0< ¢ < 1) which determines
the percentage of initial iterations with no memory. Forrap&e, if c = 0, the algorithm will
have memory for all iterations, and hence will converge §tde/the ML estimates. IE= 1, the
algorithm will have no memory, and so will converge quickdyat solution neighbourhood. For
the first case\W would need to be large in order to achieve the ML estimatestieosecond, the
algorithm will output a Markov Chain where after applyindparn in andthin, the mean of the
chain observations can be a reasonable estimate.

A number between 0 and 1 @ c < 1) will assure an initial convergence in distribution to
a solution neighbourhood for the firstV iterations and an almost sure convergence for the rest
of the iterations. Hence, this combination will leads us fast algorithm with good estimates.
To implement SAEM, the user must fix several constants maggcthie number of total iterations
W and the cut point that defines the starting of the smoothing step of the SAEMrélym,
however those parameters will vary depending of the modellae data. To determinate those
constants, a graphical approach is recommended to mohéaonvergence of the estimates for
all the parameters, and, if possible, to monitor the difieee(relative difference) between two
successive evaluations of the log-likelihot{@|yops), given by||£(0% Y yons) — £(8%|yops) ||
or [16(8™"yops) /(8™ |yaps) — 1|, respectively.



3 QR for linear mixed models and algorithms

We consider the following general LMVj; = XEB +zjjbi+¢&j,i=1,...,n, j=1,...,n;, where
yij is the jth measurement of a continuous random variable fo'rttheubjectxﬂ are row vectors
of a known design matrix of dimensidw x k corresponding to thk x 1 vector of population-
averaged fixed effec8, z; is aq x 1 design matrix corresponding to thex 1 vector of random
effectsbj, and g the independent and identically distributed random errdfée definepth
quantile function of the responygg as

Qp(Yij Ixij, bi) = xij B+ zij bi. (7)

whereQ, denotes the inverse of the unknown distribution functoiB , is the regression coef-
ficient corresponding to thpth quantile, the random effecks are distributed ab; " Nqg(O, W),
where the dispersion matri¢ = W(a) depends on unknown and reduced parameteend the

errorsgj ~ ALD(0, 0). Then,yij|b; independently follows as ALD with the density given by

_ i — Xit Bp — Zij bi
f(yi,~|Bp,bi,a>:p(la p>exp{_pp<yj Xi; Bp— i )} ®)

o

Using a MCEM algorithm, a QR-LMM with random interceptg = 1) was proposed by
Geraci and Bottai (2007). More recently, Geraci and Boft@il@) extended that setup to accom-
modate multiple random effects where the estimation of fix#elcts and covariance matrix of
the random effects were accomplished via a combination aE&8an quadrature approximations
and non-smooth optimization algorithms. Here, we considerore general correlated random
effects framework with general dispersion matih= W(a).

3.1 A MCEM algorithm

First, we develop a MCEM algorithm for ML estimation of thergaeters in the QR-LMM.
From (3), the QR-LMM defined in (7)-(8) can be representedhiresarchical form as:

yilbi,ui ~ Ny (XiTﬁp+Zibi+z9pui,0T§Di>,

[ l ) 9
u JIjlexp(o) 9)

fori=1,...,n, whered, and rg are as in (2);D; represents a diagonal matrix that contains
the vector of missing values; = (uil,...,uini)T and expo) denotes the exponential distri-
bution with meano. Let yic = (y{,b{,u)", with yi = (Yi1,...,Vin)) ", bi = (bi1,...,big) ",

Ui = (Uiz,...,Uin;) ' and leté® = (B*", o™, a™T)7, the estimate of at thek-th iteration. Since

b; andu; are independent for all=1,...,n, it follows from (3) that the complete-data log-
likelihood function is of the fornt¢(6; yc) = i1 4c(0; yi.), where

3 1 1 _ 1
(e(0;yi.) = constan%éniloga—élog\q—'\—é b W 1bi—5 u 1,
1 _
2012 (Yi—% Bp—zibi—9pui) "Dy H(yi—x Bp—zibi—Fpui). (10)
p



Given the current estimaé= 8, the E-step calculates the functiQﬁG\a(k)) =5",Q (0|5(k)),
where

Ak
Q(018") = E{te(8:y)l6%.y} (1)
3 1 —(K
O —éni|090—m [(Yi—XiTﬁp)TDil (yi_XiTBp)
p

—— (K
—2(yi — X Bp)(D; 'zb); +tr{z.(bb zD; Y); }
4
—219p(yi—xiTBIO)Tlni+219|[,(26<k>)iT1ni ZP ()Tlni]

——Iog\lP\——tr{ (bbT); Y- 1},

where t(A) indicates the trace of matri& and1p, is the vector of ones of dimensign The
calculation of these functions require expressions for

5" <€ (ble" ). G = E{ul6%.yi},
(bb); —E{bbwe i}, F”=E{Dfl|9<k%yi}
(bszD =E{bibz'D;'16%,yi}, (D 1zb _E{D 'zbi| 0¥,y },

which do not have closed forms. Since the joint distributidrihe missing datgb*, u/) is
unknown and the conditional expectations cannot be cordgartelytically for any functiow.),
the MCEM algorithm approximates the conditional expeotatiabove by their Monte Carlo
approximations

1 m , ,
E[g(bi,u;)[8Y,yi] ~ @; g(bf“, ul"™), (12)

which depend of the simulations of the two latent (missingpiablesb* and u/“ from the
conditional joint densityf(bi,ui|6(k),yi). A Gibbs Sampler can be easily implemented (see
supplementary material) given that the two full conditibdbstributionsf(bi|6(k),ui,yi) and
f(ui|6(k),bi,yi) are known. However, using known properties of conditionglestations, the
expected value in (12) can be more accurately approximated a

Ebi-,ui[g(bhui)‘e(k)vyi] = [ [ (bi7ui)|e<k) bi,yi]|Yi]
~ 3 B o618 ) (13

whereb®® is a sample from the conditional densifyb;|@,y;). Note that (13) is a more
accurate approximation as it only depends of one MC appratian instead two as needed in
(12).

Now, to drawn random samples from the full conditional disttion f (u;|y;,bi), first note
that the vectoui|yi, bj can be written asi|y;, b = [ ui1|yi1,bi, Ui2lyiz,bi, -+ uin|Yin, b1 17,
since ujj }yij,bi is independent ofiy | yik, bi, for all j,k=1,2,...,n; andj # k. Thus, the distri-
bution of f (uij |yij, bi) is proportional to

f(uij yij, i) O @(yij | % Bp + 2 bi + 9pUij, 0T3U;j) x exp(0),
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which, from Subsection 2.1, leadsug|yij, bi ~ GIG( %,Xij , ), wherey;; andy are given by

I¥ij XIJB IJ bi and _
Xij = —Tp\/— Y= \/7
From (5), and after generating samples frcﬁl(rbi\e(k),yi) (see Subsection 3.3), the con-

ditional expectation E[-|0,b;,yi] in (13) can be computed analytically. Finally, the proposed
MCEM algorithm for estimating the parameters of the QR-LM&dhde summarized as follows:

(14)

MC E-step: Given8 = 06X fori= 1....nm;

e Simulation Step: For ¢ =1,...,m, drawb{" from f(b;|@™ yi), as described later in
Subsection 3.3.

e Monte Carlo approximation: Using (5) and the simulated sample above, evaluate

E[g(bi,ui) ‘6 Yil & /ZEU, U| |9 ' 7Y|]

~(k ~ (k) ~(k
M -step: Updatee() by maximizingQ(9|6( ) ~ %Z 1511 0e(8;yi, b up) over 6( ),
which leads to the following estimates:

B\p(k+l) _ i{ ;i xi& (D )(ék)xf}] 1 X
_i: :1

~ 1 21
O-(k+l) _ 3NT2 Z{E‘l[z [(M—X,Tﬁé)kﬂ) b[k )Téa(D ) (£,k) ( TB (k+1) ))
pi= =1

T4
—29p(yi— pk“ zib{") "1, + Zpé"(uo“’kﬁlni]},

B LEE ]’

whereN = 51 ; nj and expressiong'(u;)“Y and&'(D;*)!"¥ are defined in Appendix A.2 of the
Supplementary Material. Note that for the MC E-step, we niedraw sample$)i( ), =
1,...,m, from f(b;|@® y;), wherem is the number of Monte Carlo simulations to be used, a

number suggested to be large enough. A simulation methocte samples fronf (b;|8®yi),
is described in Subsection 3.3.

oY _

3.2 A SAEM algorithm

As mentioned in Subsection 2.2, the SAEM circumvents thet@rsome problem of simulating
a large number of missing values at every iteration, leatbrayfaster and efficient solution than
the MCEM. In summary, the SAEM algorithm proceeds as foltows

E-step: GivenO = 0 fori=1,....n



e Simulation step: Drawb{™, ¢ = 1,...,m, from f(b;|@™y;), for m < 20.

e Stochastic approximation: Update the MC approximations for the conditional expecta-
tions by their stochastic approximations, given by

(1 m
S(llji) = S<1l7(i_1) + & _%gl[Xi (DY) “x"] —S(l‘fi_l)] :
(1 m
%lji) - él,(i_l) + & _%[Zl [Xié‘)(Dfl)“’k) [yi —Zini(ék — 9pé (Uj) “‘H %k 1 ]

_ 1 m
§d‘7<i) :Sgkl 1)+ ﬁ; [(yi_XiTBE)Hl)_Zibi(é,k)>Téa(D ) ( B (k+1) _z ék))
=

4

—29p(yi—x BY™ —zb{"™) "1, + 4 /’lenl} Sgk 1}

1m

K k—1 K (k)T k—1
S =Sk TS B -S) >]-

M-step: Updatea(k) by maximizingQ(6|§(k)) overa(k), which leads to the following ex-

pressions:
~ (k+1) n K 15 0
By - [leiu ] Zisgu )

Sk+l)
g = E‘»Nr2 Z\é“
wen - L3e )

~(0

Given a set of suitable initial value&( ) (see Appendix A.1 of the Supplementary Material),

gkt _ gk

Q < &, the stopping
8"+

criterion, is satisfied for three consecutive times, widgr@dd, are pre-established small values.
This consecutive evaluation avoids a fake convergenceupeatiby an unlucky Monte Carlo
simulation. As suggested by Searle et al. (1992) (page., #&9)ised = 0.001 andd, = 0.0001.
This proposed criterion will need an extremely large nundfdterations (more than usual) in
order to detect parameter convergence that are close tothelary of the parametric space. In
this case for variance components, a parameter value dassa will inflate the ratio in above
and the convergence will not be attained even though th&Ho®d was maximized with few
iterations. As proposed by Booth and Hobert (1999), we assoausecond convergence criteria
Bk g

the SAEM iterates till convergence at iteratilnif max; {

defined by max } < &, where the parameter estimates change relative to their

var(6)+5;
standard errors leading to a convergence detection evemofonded parameters. Once again,
01 and &, are some small pre-assigned values, not necessarily eqtre bnes in the previous
criterion. Based on simulation results, we &x= 0.0001 and), = 0.0002. This stopping criteria
is similar to the one proposed by Bates and Watts (1981) fo+limear least squares.
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3.3 Missing data simulation method

In order to draw samples frorf(b;j|y;, 8), we utilize the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970), a MCMC algoritfonobtaining a sequence of ran-
dom samples from a probability distribution for which direampling is not possible. The MH
algorithm proceeds as follows:

Given8 = 0¥ fori=1,...,n;

(0.k)

1. Start with an initial valud; ™.

2. Drawb; ~ h(bi*|bi<” ~%) from a proposal distribution with the same support as theaibje
distributionf (b;| 8™, y;).

3. Generat®&) ~U(0,1).

£ (bﬂe(k) ,Yi> h(bfo’k) |bi*)
(618" y;)n(b716{*¥)

4. 1fU > min{l, } return to the step 2, elsh_f:f’k) =bf

5. Repeat steps 2-4 untit samplegb{™ b®* ..., b{™)) are drawn fromb;| 8" y;.

Note that the marginal distributioh(b;|y;, 8) (omitting 8) can be represented as

f (bilyi) O f (yilbi) x f (bi),

wherebj ~ Ng(0,W) and f (yilbj) = n?izlf(yij\bi), with yij|bj ~ ALD (Xi—jl—Bp—f—Zijbi,O-, p).
Since the objective function is a product of two distribngawith both support lying irR),

a suitable choice for the proposal density is a multivarragemal distribution with the mean
and variance-covariance matrix that are the stochastimappations of the conditional expec-
tation Eb{“|y;) and the conditional variance \@""|y;) respectively, obtained from the last
iteration of the SAEM algorithm. This candidate (with pd@siinformation about the shape of
the target distribution) leads to better acceptance ratkcansequently a faster algorithm. The
resulting chairbi(l’k), bi(z’k) e bi(m’k) is a MCMC sample from the marginal conditional distribu-
tion f(b;|6(,y;). Due the dependent nature of these MCMC samples, at leas€l€ulations
are suggested.

4 Estimation

4.1 Likelihood Estimation

Given the observed data, the likelihood functi@|y) of the model defined in (7)-(8) is given
by

n n
(o(6ly) = 3 10 1(%10)) = 3 log | f(vlbi;8) f(0;0)dbs (16)
i= i= R4
where the integral can be expressed as an expectation wiihaetdo;, i.e.,E, [ f(yi|bi; 8)]. The

evaluation of this integral is not available analyticallydas often replaced by its MC approxi-
mation involving a large number of simulations. Howevetgiadative importance sampling (1S)
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procedures might require a smaller number of simulatioas the typical MC procedure. Fol-
lowing Meza et al. (2012), we can compute this integral usingS scheme for any continuous

~

distributionf (bj; 8) of bj having the same support &éb;; 0). Re-writing (16) as

(o01y)= 3 log [ ;) (LT

~ f(bi; 0)db;.
fo.p) (Di6)db

~

we can express it as an expectation with respelf tavhereb ~ f(b;; 8). Thus, the likelihood
function can now be expressed as

1090 LS | 1y o 0y LB 1€)
go(e|y) ~ |;|og{ mgl Lljll[f<ylj ‘b| ’e)] f\(b_*@); 6)] } ’ (17)

~

where{bi*(é)}, I =1,...,m, is a MC sample fromf (b;'; @), and f(yi|bi*(€);6) is expressed as
M5y f (v Ib""): 8) due to independence. An efficient choice fgb;“; 8) is f (bi|y;). There-
fore, we use the same proposal distribution discussed igegtibn 3.3, and generate samples
b~ Ng(Hp,, Zb;), wherefly, = E(b" |yi) andZp, = Var(bi|yi), which are estimated empiri-
cally during the last few iterations of the SAEM at convergen

4.2 Standard error approximation

Louis’ missing information principle (Louis, 1982) relatéhe score function of the incomplete
data log-likelihood with the complete data log-likelihotdough the conditional expectation
0o(6) =Eg[0c(6;Y com Y obs)], Wherello(6) = 94o(0;Y obs) /96 andlc(0) = 94c(6;Y com) /06
are the score functions for the incomplete and complete dagpectively. As defined in Meilij-
son (1989), the empirical information matrix can be comgue

n

~ 1
le(]y) = _ZiS(Yi‘e) s'(vi|6) - ~S(y|6)S' (v/6), (18)
i=

whereS(y|0) = 3L ,5(yi|0), with s(y;|8) the empirical score function for thieth individual.
Replacing@ by its ML estimator@ and considerindl,(0) = O, equation (18) takes the simple

form
n

u@wsgwﬁww@» (19)
1=
At the kth iteration, the empirical score function for thth subject can be computed as
m
s(yi )" = s(y;|8) Y + & %/Z s(yi,q®0;8%) —s(y;[ @)k V|, (20)
=1

whereq(“¥, ¢ =1,...,m, are the simulated missing values drawn from the conditidistibu-
tion f(-|0~1 y;). Thus, at iteratiork, the observed information matrix can be approximated as

16(Bly)® = 571 s(y;|8) s (i)™, such that at convergendg(8ly) = (Ie(Bly)lg_g) ™
is an estimate of the covariance matrix of the parametenastis. Expressions for the elements
of the score vector with respect éare given in Appendix A.3 of the Supplementary Material.
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Figure 2: Bias, Standard Deviation and RMSE far(upper panel) ang, (lower panel) for
varying sample sizes over the quantifes- 0.05, 0.10, 0.50, 0.90, 0.95.

5 Simulation studies

In this section, the finite sample performance of the progadgorithm and its performance
comparison with the Geraci and Bottai (2014) method is atallivia simulation studies. These
computational procedures were implemented usingrtiseftware (R Core Team, 2014). In
particular, we consider the following linear mixed model:

yij:Xﬂj—B-l—Zijbi-l—Sij,i:l,...,n,jzl,...,3, (21)

where the goal is to estimate the fixed effects param@tévsa grid of percentilep = {0.05,0.10,0.50,
0.90,0.95}. We simulated a & 3 design matrix;| for the fixed effect$3, where the first column
corresponds to the intercept and the other columns gedefia aN,(0,1,) density, for all
i=1,...,n. We also simulated a:32 design matrix associated with the random effects, with the
columns distributed aN>(0,12). The fixed effects parameters were chosefi;as 0.8, 3> = 0.5
and 3 = 1, o0 = 0.20, and the matri¥¥ with elements¥11 = 0.8, W12 = 0.5 andWy, = 1.
For varying sample sizes of = 50, 100 200 and 300, we generate 100 data samples for each
scenario. In addition, we also choase-= 20,c = 0.2 andW = 500.

For all scenarios, we compute the square root of the meanresgueor (RMSE), the bias
(Bias) and the Monte carlo standard deviation (MC-Sd) fahegaarameter over the 100 repli-

cates. They are defined as MC{8d = \/9—19 i <§.(j)

-\ 2 _
- Gl) , Biag6) = 6 — 6, and RMSEG,) =

%MC-SdZ(éu) +Bias(8), Whereg, = 1—%02]12% éi(j) and ) is the estimate o8 from the j-
th sample,j = 1...100. In addition, we also computed the average of the stdrfariations
(IM-Sd) obtained via the observed information matrix dedvin Subsection 4.2 and the 95%
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Table 1: Monte Carlo standard deviation (MC-Sd), mean stethdeviation (IM-Sd) and Monte
Carlo coverage probability (MC-CP) estimates of the fixeféas$ 3, and 3, from fitting the
QR-LMM under various quantiles for sample size- 100.

B B2
Quantile (%) MC-Sd IM-Sd MC-CP MC-Sd IM-Sd MC-CP
5 0.073 0.060 90 0.067 0.059 90
10 0.045 0.044 95 0.047 0.044 96
50 0.022 0.024 97 0.024 0.025 96
90 0.045 0.045 92 0.047 0.044 96
95 0.060 0.056 88 0.071 0.056 83

coverage probability (MC-CP) as Cf) = 15551231 (6 € [6 LcL. 6 uc]), wherel is the indica-
tor function such tha#, lies in the interva(8 .1, & ucL], with 8 Lo and yc| as the estimated
lower and upper bounds of the 95% Cls, respectively.

Table 2:Simulation 1: Root Mean Squared Error (RMSE) for the fixee&EQo, B1, 3> and the nuisance
parametero, obtained after fitting the QRLMM and the Geraci (2014) moesimulated data under
various settings of quantiles and sample sizes.

RMSE
Bo B1 B> o
Quantile (%) n SAEM Geraci SAEM Geraci SAEM Geraci SAEM Gerac
5 50 0.249 0.622 0199 0.311 0.230 0.296 0.024 0.046

100 0.209 0.496 0.134 0.180 0.115 0.165 0.017 0.037
200 0.195 0.303 0.084 0.099 0.090 0.137 0.017 0.029
300 0.163 0.345 0.075 0.100 0.072 0.101 0.012 0.031
10 50 0.159 0.382 0.144 0.187 0.142 0.201 0.023 0.048
100 0.112 0.355 0.094 0.117 0.084 0.130 0.019 0.048
200 0.082 0.231 0.052 0.087 0.061 0.081 0.017 0.036
300 0.073 0.223 0.045 0.072 0.047 0.076 0.011 0.034
50 50 0.063 0.107 0.063 0.090 0.064 0.102 0.025 0.174
100 0.042 0.052 0.040 0.056 0.043 0.070 0.021 0.196
200 0.027 0.053 0.026 0.048 0.028 0.039 0.016 0.164
300 0.024 0.034 0.022 0.022 0.024 0.040 0.012 0.180
90 50 0.160 0.389 0.138 0.159 0.130 0.177 0.025 0.050
100 0.102 0.394 0.089 0.100 0.071 0.126 0.019 0.051
200 0.085 0.240 0.054 0.097 0.062 0.078 0.014 0.038
300 0.065 0.276 0.045 0.066 0.047 0.064 0.011 0.038
95 50 0.255 0552 0.172 0.255 0.200 0.243 0.020 0.040
100 0.233 0470 0.156 0.169 0.135 0.161 0.020 0.036
200 0.146 0423 0.080 0.160 0.105 0.106 0.015 0.038
300 0.157 0468 0.077 0.113 0.071 0.061 0.014 0.036

The results are summarized in Figure 2. We observe thaBidg SD and RMSEfor the
regression parametefs andf, tends to approach zero with increasing sample sigeréveal-
ing that the ML estimates obtained via the proposed SAEMrélgo are conformable to the
expected asymptotic properties. In addition, Table 1 prissthe IM Sd, MC-Sd and MC-CP for
B1 and B, across various quantiles. The estimates of MC-Sd and IMkSgexy close, hence we
can infer that the asymptotic approximation of the params&tiEndard errors are reliable. Fur-
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thermore, as expected, we observe that the MC-CP remaimes fowextreme quantiles.

Finally, we compare the performance of SAEM algorithm with approximate method pro-
posed by Geraci (2014). The Geraci’s algorithm can be impteed using tha package qmm () .
The results are presented in Table 2 and Figure B.1 (SupplamyeMaterial). We observe that
the RMSE from the proposed SAEM algorithm are lower than Gengthod across all scenarios,
with the differences considerably higher for the extremangiles. Finally, Figure B.2 (Supple-
mentary Material) that compares the differences in SD betvtiee two methods for fixed effects
B1 and 3, at specified quantiles reveals that the SD are mostly snfalldhe SAEM method.
Thus, we conclude that the SAEM algorithm produces moreiggastimates.

6 Applications

In this section, we illustrate the application of our methotvo interesting longitudinal datasets
from the literature via our developedpackageqrLMV, currently available for free download
from theR CRAN (Comprehensive R Archive Network).

6.1 Cholesterol data

The Framingham cholesterol study generated a benchmaaketgZhang and Davidian, 2001)
for longitudinal analysis to examine the role of serum cht@eol as a risk factor for the evolution
of cardiovascular disease. We analyze this dataset witaith@f explaining the full conditional
distribution of the serum cholesterol as a function of a $ebwariates of interest via modelling
a grid of response quantiles. We fit a LMM model to the data asifipd by

Yij = Bo+ Brgender+ Brage + boi + baitij + &ij (22)

whereY;; is the cholesterol level (divided by 100) at th#h time point for theith subject,
tij = (1 —5)/10 wherert is the time measured in years from the start of the study, agetds
the subject’s baseline age, gender is the dichotomous g@rfemale, 1=male)); andb,; the
random intercept and slope, respectively, for subjeahde;; the measurement error term, for
200 randomly selected subjects.

After fitting the QR-LMM over the gridp = {0.05,0.10,...,0.95}, we present a graphical
summary of the results in Figure 3. The figure displays the 86ffidence band for the fixed ef-
fects parameteiy, 31, 2, and for the nuisance parameterThe solid lines represent tii& o25
andQg g75 percentiles, obtained from the estimated standard erefirsett! in Subsection 4.2. The
figure reveals that the effect of gender and age become moneiqpent with increasing condi-
tional quantiles|). In addition, although age exhibits a positive influenceéhmcholesterol level
across all quantiles, the confidence band for gender inslQa@eross all quantiles, and hence its
effect is non-significant. The estimated nuisance paraneeigsymmetric aboup = 0.5, taking
its maximum value at that point and decreasing for the ex@¢rgaoantiles. Figure B.3 (Supple-
mentary Material) plots the fitted regression lines for thargiles 010,0.25,0.50(mear), 0.75
and 090 by gender. From this figure, it is clear how the extreme tjlegncapture the full data
variability and detect some atypical observations. Therg#pt of the quantile functions look
very similar for both panels because of the non-significarigender.
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6.2 Orthodontic distance growth data

A second application was developed using a data set formgatimtinal orthodontic study (Pot-
thoff and Roy, 1964; Pinheiro et al., 2001) performed at thesersity of North Carolina Dental
School. Here, researchers measured the distance betwepituitary and the pterygomaxillary
fissure (two points that are easily identified on x-ray expeswf the side of the head) for 27
children (16 boys and 11 girls) every two years from age 8 age 14. Similar to Application
1, we fit the following LMM to the data:

Yij = Bo+ Brgender+ Botij + boi + baitij + &ij (23)

p0O

whereY;; is the distance between the pituitary and the pterygonaayifissure (in mm) at the
jth time for theith child, tj; is the child’s age at timg taking values 8, 10, 12, and 14 years,
gender is a dichotomous variable (O=female, 1=male) fdd¢linde;; the random measurement
error term. Initial exploratory plots for 10 random childria the left panel of Figure B.4 (Sup-
plementary Material) suggest an increasing distance wgpect to age. The individual profiles
by gender (right panel) show differences between distafacdsoys and girls (distance for boys
greater than those for girls), and hence we could expectrafisant gender effect. Once again,
after fitting the QR-LMM over the grigh = {0.05,0.10,...,0.95}, the point estimates and asso-
ciated 95% confidence bands for model parameters are peelsenfigure 4. From the figure,
we infer that the effect of gender and age are significantsacadl quantiles, with their effect
increasing for higher conditional quantiles. Effect of Agealways positive across all quantiles,
with a higher effect at the two extremes. behaves the same as in Application 1. Figure B.5
(Supplementary Material) plots the fitted regression lifoeghe quantiles .0,0.25,0.50,0.75
and 090, overlayed with the individual profiles (gray solid lingby gender. These fits cap-
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Figure 3: Point estimates (center solid line) and 95% confidenceviaterfor model parameters after
fitting the QR-LMM using theyrLMM package to the Cholesterol data across various quantitesinter-
polated curves are spline-smoothed.
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Figure 4: Point estimates (center solid line) and 95% confidenceviaterfor model parameters after
fitting the QR-LMM using theqrLMM package to the orthodontic growth distance data acrossusri
guantiles. The interpolated curves are spline-smoothed.

ture the variability of the individual profiles, and alsofdif by gender due to its significance
in the model. The package also produces graphical summaries of point esténaaid confi-
dence intervals (95% by default) across various quantakepresented in Figures 3 and 4. Trace
plots showing convergence of these estimates are preserfteglre B.6 (Supplementary Mate-
rial). For example, for the 75th quantile, we can confirm thatconvergence parameters for the
SAEM algorithm M = 10, c = 0.25 andW = 300) has been set adequately leading to a quick
convergence in distribution within the first 75 iteratioaad then converging almost surely to a
local maxima in a total of 300 iterations. Sample output fritveqrLMM package is provided in
Appendix C of the Supplementary Material.

7 Conclusions

In this paper, we developed a likelihood-based inferenc®f-LMM with the likelihood func-
tion based on the ALD. The ALD presents a convenient framkviar the implementation of
the SAEM algorithm leading to the exact ML estimation of tlaegmeters. The methodology is
illustrated via application to two longitudinal clinicahthsets. We believe this paper is the first
attempt for exact ML estimation in the context of QR-LMMsdahus provides an improvement
over the Geraci and Bottai (2014) method. The methods dpedlare readily implementable
via theR packageyrLMM().

Although the QR-LMM considered here has shown great flakybib quantify the entire
conditional distribution of the outcome variable, its retness against outliers can be seriously
affected by the presence of skewness and thick-tails. Rgceachos et al. (2010) proposed a
remedy to accommodate these using scale mixtures of skewahdistributions in the random
effects. We conjecture that methodology can be transfaodtie QR-LMM framework, and
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should yield satisfactory results at the expense of additicomplexity in implementation. An
in-depth investigation of such extension is beyond the sadphe present paper, but certainly an
interesting topic for future research.

APPENDIX A Some results on SAEM implementation

A.1 A Gibbs Sampler Algorithm

In order to draw a sample fror(b;, uj|y;) we can use the Gibbs Sampler, an Markov chain Monte
Carlo (MCMC) algorithm proposed by (Casella and George 2198 obtaining a sequence of
observations which are approximated from the joint prolitgdistribution of two or several
random variables just using their full conditional distriions. Computing the full conditional
distributionsf (bj|u;j,yi) and f (uj|bj,y;), we have for the first one that

f(bilyi,ui) O f(yilbi,ui) f(bi),
0 g (WX Bp+Zibi+ 9o, 0TD(W) ) x y(bilo, W) (24)
so we have a product of multivariate normal densities whathton is based in the next lemma:

Lemma 1. Simplifying the notation above it follows that

(YIXB+2Zb, Q)@ (b|0,W) = gh(yIXB,Z)@y(b[H1(y —XB),A) (25)

where
U =Az2'Q ! T=Q+zwz" A=(w1lizTQlz)%l (26)

Due the equation (25) from the lemma 2 it leads us to
f(bilyi,ui) O ¢n <yi| XiTBp+19pui,GTgD(ui)+Zi‘PZiT) X

@ (BIAZT (73D(W)) " (yi-X By Foui) )

whereA; = (LIJ—1+UT§ZiTD(ui)Zi)71. Then dropping the first term of the product by pro-
portionality it's easy to see that|y;, uj ~ Nq <AiZiT (argD(ui))_1 (yi—XiTBp—Bpui) ,Ai>.

On other hand, for the full conditional distributidifu;|yi, bi) note that the vectau;|y;,b; can
be constructed asilyi,bi = [ Uitlyis,bi Ualyiz,bi -+ UinlVin,bi | given thatuij|yij,bi L
Uik | Yik, bi for all j,k=1,2,...,nj andj # k. So, the univariate distribution of thiguij |yij, b;) is
proportional to the product of(y;j|bj, uij) and f (u;; ), a Normal and a Exponential distribution,
that is

f(uijlyij, i) O @(yij | X{} Bp+Zii bi + 9pUij, 0Thuij) x Gy (1,0),

B ’yij —XﬂBp—Zﬂbi’

then the Lemma 1 leads us thag|yij, bj ~ GIG(%,XU,LLI), wherei; = and
TpV/O

Nea

In resume, the Gibbs Sampler proceeds as follow:
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Given8 =0® fori=1,....n;

(1) Start with suitable initial valueebi(o’k), ui(o’k))

-1
(2) Draw b ly;, uf )NNq<Ai(k)ZiT(a(k)rgD(ui(O’k))> <yi—XiT[3 apu<°'<>) /\.00)

_xTBY _ZzTpK

1K) 1 ’yu XijPp —Ziibi Tp :

3 Drawu , ~GIG | =, , forall j=1,2,...,n

© Pl b (2 /ol 2/o® ‘ '
-

(4)Constructu \y., )as[ (1K), b( K u.(l’k) i bi(l’k) |(n.) b(lk)]

(5) Repeat the steps 2-4 until drawsamples(b e k)) , (bi(z’k), ui(z’k)> e (b-(m’k) , ui(m’k))
from bj, u.|9

Note that for a given a iteratioh and for alli = 1,...,n, drawing from the conditional dis-
trlbutlon of the vectou \y., )implies to draw from the univariate conditional distrilaris
” |y.,, ® for all j=1,2,...,n;, sothis construction results in a heavy computationalrélyo.

A.2 Specification of initial values

It is well known that a smart choice of the initial values of Mktimates can assure a fast con-
vergence of an algorithm to the global maxima solution fer iéspective likelihood. Obviating
the random effects term, lgf ~ ALD(xiTﬁp, o, p). Next, considering the MLEs cﬁp ando as
defined in?) for this model, we follow the steps below for the QR-LMM inephentation:

I ~(0)
1. Compute an initial valug, as

~0)
B, =arg min Zipp Yi =X Bp)-

Bpe]R

2. Using the initial value foﬁs) obtained above, comput? as

= %épp(y

3. Use &g x qidentity matrixl . for the the initial valuep©).

A.3 Computing the conditional expectations

Due the independence betweam\yij,bi and ui| yik, bi, for all j,k=1,2,...,n, andj # k, we
can writeui|yi,bi = [ Ui1]yi1,bi  Ui2lyi2,bi -+ Uin|Vin,bi ]T. Using this fact, we are able to
compute the conditional expectatiofi$u;) and&'(D; ) in the following way. Using matrix ex-
pectation properties, we define these expectations as

&(ui) = [6(uin) &(Uin) - & (Uiny)]" (27)
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and

sul)y o 0
0 &) ... 0
&(Dit) = diag & (u ) = _ (”_'2)_ . (28)
o 0 . £ (uh)

We already havej|yij,bi ~ GIG( %,Xij,l.l/) whereyij andy are defined in (14). Then, using
(5), we compute the moments involved in the equations abev&(gj) = X g (1+ % w) and
&g h = L” . Thus, for iteratiork of the algorithm and for théth Monte Carlo realization, we

can comput$( ui)“® and&’[D;*]""¥ using equations (27)-(28) where
2lyii —x BY —zT b + 40 , T2
(g)(uij)(/{,k) _ |y|] IJBD 1] ™1 | and g(uﬁl)(y,k) _ — p — 5
Tp 2\yij _Xiij _lebl |

A.4  The empirical information matrix

In light of (10), the complete log-likelihood function cae bewritten as

3 1 _ 1 1
ECI(9> - _§n| |OgG—RZITDI 1Z| —§|Og}q"—§ b|T 1b|——lJ|T:|.|qI (29)
p

where; = y; —xiTBp—zi bi—9pu; andB = (B;, o,a')’. Taking partial derivatives with respect
to 0, we have the following score functions:

00:(0) B 0 0/i(0) 1

= = —_x;D1¢,
B, oB, G otz G
and
05(;.(9) . 3n| 1 1 T _1 1 T
oo 2 0+202T25' Git o2 Ui dn

Let a be the vector of reduced parameters frinthe dispersion matrix fdo;. Using the trace
properties and differentiating the complete log-likeblddunction, we have that

05(;.(9) . d n 1 Al LT
W = 39 éIog}lIJ} étr{‘{J bib;' }

= —%tr{w1}+%tr{wlwlbib?}

= %tr{lp_l(bi b —wW)w
Next, taking derivatives with respect to a specificfrom a based on the chain rule, we have

04:i(0) _ oW 9/:i(0)
oa; daj oW
ow 1

_ . -1
= 5 ]Zt{w Ybib —wyw1y. (30)
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where, using the fact thatfiABCD} = (veqAT))T (D' @ B)(vedC)), (30) can be rewritten as

al}é?) — (vect )T (WL W) (vedbib] W) (1)

Let Z4 be the elimination matrix¥) that transforms the vectorizéH (written as ve¢W))
into its half-vectorized form vecM), such thatZoveqW) = vech'W). Using the fact that for

all j=1,...,3q(q+1), the vector(vec(g,—:!:)T)T corresponds to thgth row of the elimination
matrix 74, we can generalize the derivative in (31) for the vector shpwetersx as

(Mci(e)
Ja

Finally, at each iteration, we can compute the empiricarimiation matrix (19) by approximating
the score for the observed log-likelihood using the stahapproximation given in (20).

= %@q(tv—l © W) (vedbib! —W)).
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Figure B.1: Comparison of the Bias (upper row) and RMSE (lomsv) at the 95-th quantile
from fitting the QR-LMM and the Geraci (2014) model for the fixeffectsfy, 1 andBs.
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Figure B.6: Graphical summary of convergence for the fixéeceparameters, variance compo-
nents of the random effects, and nuisance parameters agedérom theyrLMM package for the
orthodontic distance growth data. The vertical dasheddilanits the beginning of the almost
sure convergence, as defined by the cut-point pararoeter
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APPENDIX C Sample output from R packageqrLMM ()

Quantile = 0.75
Subjects = 27 ; Observations = 108 ; Balanced = 4

- Fixed effects

Estimate Std. Error =z value Pr(>|z]|)

beta 1 17.08405 0.53524 31.91831 0
beta 2 2.15393 0.36929 5.83265 0
beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix
z1 z2

z1l 0.16106 -0.00887

z2 -0.00887 0.02839

Loglik AIC BIC HQ
Value -216.454 446.907 465.682 454.52

Convergence reached? = FALSE
Iterations = 300 / 300
Criteria = 0.00381

MC sample 10

Cut point = 0.25

Processing time = 7.590584 mins
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