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Abstract

This paper develops a likelihood-based approach to analyzequantile regression (QR)
models for continuous longitudinal data via the asymmetricLaplace distribution (ALD).
Compared to the conventional mean regression approach, QR can characterize the entire
conditional distribution of the outcome variable and is more robust to the presence of outliers
and misspecification of the error distribution. Exploitingthe nice hierarchical representation
of the ALD, our classical approach follows a Stochastic Approximation of the EM (SAEM)
algorithm in deriving exact maximum likelihood estimates of the fixed-effects and variance
components. We evaluate the finite sample performance of thealgorithm and the asymptotic
properties of the ML estimates through empirical experiments and applications to two real
life datasets. Our empirical results clearly indicate thatthe SAEM estimates outperforms the
estimates obtained via the combination of Gaussian quadrature and non-smooth optimization
routines of the Geraci (2014)’s approach in terms of standard errors and mean square error.
The proposed SAEM algorithm is implemented in theR packageqrLMM()

Keywords:Asymmetric Laplace distribution; SAEM algorithm;R packageqrLMM

1 Introduction

Linear mixed-effects models (LMM) are frequently used to analyze grouped/clustered data (such
as longitudinal data, repeated measures, and multilevel data) because of their ability to handle
within-subject correlations that characterizes grouped data (Pinheiro and Bates, 2000). Majority
of these LMMs estimate covariate effects on the response through a mean regression, controlling
for between-cluster heterogeneity via normally-distributed cluster-specific random effects and
random errors. However, this centrality-based inferential framework is often inadequate when the
conditional distribution of the response (conditional on the random terms) is skewed, multimodal,
or affected by atypical observations. In contrast, conditional quantile regression (QR) methods
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Koenker (2004, 2005) quantifying the entire conditional distribution of the outcome variable
were developed that can provide assessment of covariate effects at any arbitrary quantiles of
the outcome. In addition, QR methods do not impose any distributional assumption on the error
terms, except that the error term has a zero conditional quantile. Because of its popularity and the
flexibility it provides, standard QR methods are implementable via available software packages,
such as, theR packagequantreg.

Although QR was initially developed under a univariate framework, the abundance of clus-
tered data in recent times led to its extensions into mixed modeling framework (classical, or
Bayesian) via either the distribution-free route (Lipsitzet al., 1997; Galvao and Montes-Rojas,
2010; Galvao Jr, 2011; Fu and Wang, 2012), or the traditionallikelihood-based route mostly us-
ing the ALD (Geraci and Bottai, 2007; Yuan and Yin, 2010; Geraci and Bottai, 2014). Among the
ALD-based models, Geraci and Bottai (2007) proposed a MonteCarlo EM (MCEM)-based con-
ditional QR model for continuous responses with a subject-specific random (univariate) intercept
to account for within-subject dependence in the context of longitudinal data. However, due to the
limitations of a simple random intercept model to account for the between-cluster heterogeneity,
Geraci and Bottai (2014) extended it to a general linear quantile mixed effects regression model
(QR-LMM) with multiple random effects (both intercepts andslopes). However, instead of going
the MCEM route, the estimation of the fixed effects and the covariance components were imple-
mented using an efficient combination of Gaussian quadrature approximations and non-smooth
optimization algorithms.

Although the literature on QR-LMM is now substantial, thereare no studies conducting exact
inferences in the context of QR-LMM from a likelihood-basedperspective. In this paper, we
proceed to achieve that via a robust parametric ALD-based QR-LMM where the full likelihood-
based implementation follows a stochastic version of the EMalgorithm (SAEM) proposed by
Delyon et al. (1999) for maximum likelihood (ML) estimation, in contrast to the approxima-
tions proposed by Geraci and Bottai (2014). The SAEM algorithm has been proved to be more
computationally efficient than the classical MCEM algorithm due to the recycling of simulations
from one iteration to the next in the smoothing phase of the algorithm. Moreover, as pointed out
by Meza et al. (2012), the SAEM algorithm, unlike the MCEM, converges even in a typically
small simulation size. Recently, Kuhn and Lavielle (2005) showed that the SAEM algorithm is
very efficient in computing the ML estimates in mixed effectsmodels. Our empirical results us-
ing the SAEM are more efficient than the proposition of Geraciand Bottai (2014) for simulated
data. Furthermore, application of our method to two longitudinal datasets is illustrated via theR

packageqrLMM().
The rest of the paper proceeds as follows. Section 2 presentssome preliminaries, in particular

the connection between QR and ALD, and an outline of the EM andSAEM algorithms. Section
3 develops the MCEM and the SAEM algorithms for a general LMM,while Section 4 outlines
the likelihood estimation and standard errors. Section 5 presents simulation studies to compare
the finite sample performance of our proposed methods with the competing Geraci and Bottai
(2014) method. Application of the SAEM method to two longitudinal datasets, one examining
cholesterol level and the other on orthodontic distance growth are presented in Section 6. Finally,
Section 7 concludes, sketching some future research directions.

2 Preliminaries

In this section, we provide some useful results on the ALD andQR, and outline the EM and
SAEM algorithms for ML estimation.
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2.1 Connection between QR and ALD

Following Yu and Moyeed (2001), a random variable Y is distributed as an ALD with location
parameterµ, scale parameterσ > 0 and skewness parameterp∈ (0,1), if its probability density
function (pdf) is given by

f (y|µ,σ , p) =
p(1− p)

σ
exp

{
−ρp

(
y−µ

σ

)}
, (1)

whereρp(.) is the check (or loss) function defined byρp(u) = u(p− I{u < 0}), with I{.} the
usual indicator function. This distribution is denoted byALD(µ,σ , p). It is easy to see that
W = ρp

(Y−µ
σ
)

follows an exponential(1) distribution. Figure 1 plots theALD illustrating how
the skewness changes with altering choices forp. For example, whenp= 0.1, most of the mass
is concentrated around the right tail, while forp = 0.5, both tails of the ALD have equal mass
and the distribution resemble the more common double exponential distribution. In contrast to
the normal distribution with a quadratic term in the exponent, the ALD is linear in the exponent.
This results in a more peaked mode for the ALD together with thicker tails. On the contrary,
the normal distribution has heavier shoulders compared to the ALD. The ALD abides by the
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Figure 1: Standard asymmetric Laplace density

following stochastic representation (Kotz et al., 2001; Kuzobowski and Podgorski, 2000). Let
U ∼ exp(σ) andZ∼ N(0,1) be two independent random variables. Then,Y ∼ ALD(µ,σ , p) can
be represented as

Y
d
= µ +ϑpU + τp

√
σUZ, (2)

whereϑp =
1−2p

p(1−p) andτ2
p =

2
p(1−p) , and

d
= denotes equality in distribution. This representation

is useful in obtaining the moment generating function (mgf), and formulating the estimation
algorithm. From (2), the hierarchical representation of the ALD follows

Y|U = u ∼ N(µ +ϑpu,τ2
pσu),

U ∼ exp(σ). (3)
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This representation will be useful for the implementation of the EM algorithm. Moreover,
sinceY|U = u∼ N(µ +ϑpu,τ2

pσu), one can easily derive the pdf ofY, given by

f (y|µ,σ , p) =
1√
2π

1

τpσ
3
2

exp
(δ (y)

γ

)
A(y), (4)

whereδ (y) = |y−µ|
τp
√

σ , γ =
√

1
σ
(
2+

ϑ 2
p

τ2
p

)
=

τp

2
√

σ andA(y)= 2
(

δ (y)
γ

)1/2
K1/2

(
δ (y)γ

)
, with Kν(.), the

modified Bessel function of the third kind. It is easy to observe that the conditional distribution
of U , givenY = y, is U |(Y = y) ∼ GIG(1

2,δ ,γ), whereGIG(ν,a,b) is the Generalized Inverse
Gaussian (GIG) distribution (Barndorff-Nielsen and Shephard, 2001) with the pdf

h(u|ν,a,b) = (b/a)ν

2Kν(ab)
uν−1exp

{
− 1

2

(
a2/u+b2u

)}
, u> 0, ν ∈ R, a,b> 0.

The moments ofU can be expressed as

E[Uk] =
(a

b

)k Kν+k(ab)
Kν(ab)

,k∈ R (5)

Some useful properties of the Bessel function of the third kind Kλ (u) are: (i)Kν(u) = K−ν(u);

(ii) Kν+1(u) =
2ν
u Kν(u)+Kν−1(u); (iii) for non-negative integerr, Kr+1/2(u) =

√
π
2u exp(−u)

∑r
k=0

(r+k)!(2u)−k

(r−k)!k! . A special case isK1/2(u) =
√

π
2u exp(−u).

2.2 The EM and SAEM algorithms

In models with missing data, the EM algorithm (Dempster et al., 1977) has established itself as the
most popular tool for obtaining the ML estimates of model parameters. This iterative algorithm
maximizes the complete log-likelihood functionℓc(θθθ ; ycom) at each step, converging quickly to
a stationary point of the observed likelihood(ℓ(θθθ ; yobs)) under mild regularity conditions (Wu,
1983; Vaida, 2005). The EM algorithm proceeds in two simple steps:
E-Step: Replace the observed likelihood by the complete likelihoodand compute its conditional

expectationQ(θθθ |θ̂ (k)) = E

{
ℓc(θθθ ; ycom)|θ̂θθ

(k)
,yobs

}
, whereθ̂θθ

(k)
is the estimate ofθθθ at thek-th

iteration;

M-Step: MaximizeQ(θ |θ̂θθ (k)
) with respect toθθθ to obtain̂θθθ

(k+1)
.

However, in some applications of the EM algorithm, the E-step cannot be obtained analyt-
ically and has to be calculated using simulations. Wei and Tanner (1990) proposed the Monte
Carlo EM (MCEM) algorithm in which the E-step is replaced by aMonte Carlo approximation
based on a large number of independent simulations of the missing data. This simple solution
is infact computationally expensive, given the need to generate a large number of independent
simulations of the missing data for a good approximation. Thus, in order to reduce the amount
of required simulations compared to the MCEM algorithm, theSAEM algorithm proposed by
Delyon et al. (1999) replaces the E-step of the EM algorithm by a stochastic approximation
procedure, while the Maximization step remains unchanged.Besides having good theoretical
properties, the SAEM estimates the population parameters accurately, converging to the global
maxima of the ML estimates under quite general conditions (Allassonnière et al., 2010; Delyon
et al., 1999; Kuhn and Lavielle, 2004). At each iteration, the SAEM algorithm successively sim-
ulates missing data with the conditional distribution, andupdates the unknown parameters of the
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model. Thus, at iterationk, the SAEM proceeds as follows:
E-Step:

• Simulation: Draw (q(ℓ,k)), ℓ= 1, . . . ,m from the conditional distributionf (q|θ (k−1),yi).

• Stochastic Approximation: Update theQ(θ |θ̂ (k)) function as

Q(θ |θ̂ (k))≈ Q(θ |θ̂ (k−1))+δk

[
1
m

m

∑
ℓ=1

ℓc(θ ;yobs,q
(ℓ,k))|θ̂ (k),yobs−Q(θ |θ̂ (k−1))

]
(6)

M-Step:

• Maximization: Updateθ̂ (k) asθ̂ (k+1) = arg max
θ

Q(θ |θ̂ (k)),

whereδk is a smoothness parameter (Kuhn and Lavielle, 2004), i.e., adecreasing sequence of
positive numbers such that∑∞

k=1 δk = ∞ and∑∞
k=1 δ 2

k < ∞. Note that, for the SAEM algorithm,
the E-Step coincides with the MCEM algorithm, however a small number of simulationsm (sug-
gested to bem≤ 20) is necessary. This is possible because unlike the traditional EM algorithm
and its variants, the SAEM algorithm uses not only the current simulation of the missing data at
the iterationk denoted by(q(ℓ,k)), ℓ = 1, . . . ,m but some or all previous simulations, where this
‘memory’ property is set by the smoothing parameterδk.

Note, in equation (6), if the smoothing parameterδk is equal to 1 for allk, the SAEM algo-
rithm will have ‘no memory’, and will be equivalent to the MCEM algorithm. The SAEM with
no memory will converge quickly (convergence in distribution) to a solution neighbourhood,
however the algorithm with memory will converge slowly (almost sure convergence) to the ML
solution. We suggested the following choice of the smoothing parameter:

δk =

{
1, for 1≤ k≤ cW

1
k−cW, for cW+1≤ k≤W

whereW is the maximum number of iterations, andc a cut point (0≤ c≤ 1) which determines
the percentage of initial iterations with no memory. For example, if c = 0, the algorithm will
have memory for all iterations, and hence will converge slowly to the ML estimates. Ifc= 1, the
algorithm will have no memory, and so will converge quickly to a solution neighbourhood. For
the first case,W would need to be large in order to achieve the ML estimates. For the second, the
algorithm will output a Markov Chain where after applying aburn in andthin, the mean of the
chain observations can be a reasonable estimate.

A number between 0 and 1 (0< c < 1) will assure an initial convergence in distribution to
a solution neighbourhood for the firstcW iterations and an almost sure convergence for the rest
of the iterations. Hence, this combination will leads us to afast algorithm with good estimates.
To implement SAEM, the user must fix several constants matching the number of total iterations
W and the cut pointc that defines the starting of the smoothing step of the SAEM algorithm,
however those parameters will vary depending of the model and the data. To determinate those
constants, a graphical approach is recommended to monitor the convergence of the estimates for
all the parameters, and, if possible, to monitor the difference (relative difference) between two
successive evaluations of the log-likelihoodℓ(θθθ |yobs), given by||ℓ(θθθ (k+1)|yobs)− ℓ(θθθ (k)|yobs)||
or ||ℓ(θθθ (k+1)|yobs)/ℓ(θθθ (k)|yobs)−1||, respectively.
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3 QR for linear mixed models and algorithms

We consider the following general LMMyi j = x⊤i j βββ +zi j bi +εi j , i = 1, . . . ,n, j = 1, . . . ,ni , where

yi j is the jth measurement of a continuous random variable for theith subject,x⊤i j are row vectors
of a known design matrix of dimensionN× k corresponding to thek×1 vector of population-
averaged fixed effectsβββ , zi j is aq×1 design matrix corresponding to theq×1 vector of random
effectsbi , and εi j the independent and identically distributed random errors. We definepth
quantile function of the responseyi j as

Qp(yi j |xi j ,bi) = x⊤i j βββ p+zi j bi. (7)

whereQp denotes the inverse of the unknown distribution functionF, βββ p is the regression coef-

ficient corresponding to thepth quantile, the random effectsbi are distributed asbi
iid∼ Nq(0,ΨΨΨ),

where the dispersion matrixΨΨΨ = ΨΨΨ(ααα) depends on unknown and reduced parametersααα, and the
errorsεi j ∼ ALD(0,σ). Then,yi j |bi independently follows as ALD with the density given by

f (yi j |βββp,bi ,σ) =
p(1− p)

σ
exp

{
−ρp

(
yi j −x⊤i j βββp−zi j bi

σ

)}
, (8)

Using a MCEM algorithm, a QR-LMM with random intercepts(q = 1) was proposed by
Geraci and Bottai (2007). More recently, Geraci and Bottai (2014) extended that setup to accom-
modate multiple random effects where the estimation of fixedeffects and covariance matrix of
the random effects were accomplished via a combination of Gaussian quadrature approximations
and non-smooth optimization algorithms. Here, we considera more general correlated random
effects framework with general dispersion matrixΨΨΨ = ΨΨΨ(ααα).

3.1 A MCEM algorithm

First, we develop a MCEM algorithm for ML estimation of the parameters in the QR-LMM.
From (3), the QR-LMM defined in (7)-(8) can be represented in ahierarchical form as:

yi |bi ,ui ∼ Nni

(
x⊤i βββp+zibi +ϑpui ,στ2

pDi

)
,

bi ∼ Nq (0,ΨΨΨ),

ui ∼
ni

∏
j=1

exp(σ), (9)

for i = 1, . . . ,n, whereϑp and τ2
p are as in (2);Di represents a diagonal matrix that contains

the vector of missing valuesui = (ui1, . . . ,uini)
⊤ and exp(σ) denotes the exponential distri-

bution with meanσ . Let yic = (y⊤
i ,b

⊤
i ,u

⊤
i )

⊤, with yi = (yi1, . . . ,yini)
⊤, bi =

(
bi1, . . . ,biq

)⊤
,

ui = (ui1, . . . ,uini)
⊤and letθ (k) = (βββ (k)⊤

p ,σ (k),ααα (k)⊤)⊤, the estimate ofθ at thek-th iteration. Since
bi and ui are independent for alli = 1, . . . ,n, it follows from (3) that the complete-data log-
likelihood function is of the formℓc(θθθ ; yc) = ∑n

i=1ℓc(θθθ ; yic), where

ℓc(θθθ ; yic) = constant−3
2

ni logσ − 1
2

log
∣∣ΨΨΨ
∣∣−1

2
b⊤

i ΨΨΨ−1bi−
1
σ

u⊤
i 1ni

− 1
2στ2

p
(yi−x⊤i βββp−zibi−ϑpui)

⊤D−1
i (yi−x⊤i βββp−zibi−ϑpui). (10)
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Given the current estimateθθθ = θθθ (k), the E-step calculates the functionQ(θθθ |θ̂θθ (k)
)=∑n

i=1Qi(θθθ |θ̂θθ
(k)
),

where

Qi(θθθ |θ̂θθ
(k)
) = E

{
ℓc(θθθ ; yic)|θθθ (k),y

}
(11)

∝ −3
2

ni logσ− 1
2στ2

p

[
(yi−x⊤i βββp)

⊤D̂−1
i

(k)
(yi−x⊤i βββp)

−2(yi −x⊤i βββp)
̂(D−1

i zb)i
(k)

+ tr

{
zi

̂(bb⊤zD−1
i )i

(k)
}

−2ϑp(yi−x⊤i βββp)
⊤1ni +2ϑp(zb̂(k))⊤i 1ni +

τ4
p

4
ûi

(k)⊤1ni

]

−1
2

log
∣∣ΨΨΨ
∣∣−1

2
tr

{
(̂bb⊤)i

(k)
ΨΨΨ−1

}
,

where tr(A) indicates the trace of matrixA and1p is the vector of ones of dimensionp. The
calculation of these functions require expressions for

b̂i
(k)
= E

{
bi |θθθ (k),yi

}
, ûi

(k) = E
{

ui |θθθ (k),yi
}
,

(̂bb⊤)i
(k)

= E
{

bib⊤
i |θθθ (k),yi

}
, D̂−1

i

(k)

= E
{

D−1
i |θθθ (k),yi

}
,

̂(bb⊤zD−1)i
(k)

= E
{

bib⊤
i z⊤

i D−1
i |θθθ (k),yi

}
, ̂(D−1zb)i

(k)

= E
{

D−1
i zibi |θθθ (k),yi

}
,

which do not have closed forms. Since the joint distributionof the missing data(b(k)
i ,u(k)

i ) is
unknown and the conditional expectations cannot be computed analytically for any functiong(.),
the MCEM algorithm approximates the conditional expectations above by their Monte Carlo
approximations

E[g(bi ,ui) |θθθ (k),yi]≈
1
m

m

∑
ℓ=1

g(b(ℓ,k)
i ,u(ℓ,k)

i ), (12)

which depend of the simulations of the two latent (missing) variablesb(k)
i and u(k)

i from the

conditional joint densityf (bi ,ui |θθθ (k),yi). A Gibbs Sampler can be easily implemented (see
supplementary material) given that the two full conditional distributions f (bi |θθθ (k),ui ,yi) and
f (ui |θθθ (k),bi ,yi) are known. However, using known properties of conditional expectations, the
expected value in (12) can be more accurately approximated as

Ebi ,ui
[g(bi,ui)|θθθ (k),yi ] = Ebi

[Eui
[g(bi,ui)|θθθ (k),bi ,yi ]|yi ]

≈ 1
m

m

∑
ℓ=1

Eui
[g(b(ℓ,k)

i ,ui)|θθθ (k),b(ℓ,k)
i ,yi ], (13)

whereb(ℓ,k) is a sample from the conditional densityf (bi |θθθ (k),yi). Note that (13) is a more
accurate approximation as it only depends of one MC approximation instead two as needed in
(12).

Now, to drawn random samples from the full conditional distribution f (ui |yi,bi), first note
that the vectorui |yi,bi can be written asui |yi,bi = [ ui1|yi1,bi, ui2|yi2,bi , · · · ,uini |yini ,bi ]

⊤,
sinceui j

∣∣yi j ,bi is independent ofuik|yik,bi , for all j,k= 1,2, . . . ,ni and j 6= k. Thus, the distri-
bution of f (ui j |yi j ,bi) is proportional to

f (ui j |yi j ,bi) ∝ φ(yi j
∣∣x⊤i j βββp+z⊤i j bi +ϑpui j , στ2

pui j )×exp(σ),
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which, from Subsection 2.1, leads toui j |yi j ,bi ∼ GIG( 1
2,χi j ,ψ), whereχi j andψ are given by

χi j =
|yi j−x⊤i j βββ p−z⊤i j bi |

τp
√

σ
and ψ =

τp

2
√

σ
(14)

From (5), and after generating samples fromf (bi |θθθ (k),yi) (see Subsection 3.3), the con-
ditional expectation Eui

[·|θθθ ,bi ,yi ] in (13) can be computed analytically. Finally, the proposed
MCEM algorithm for estimating the parameters of the QR-LMM can be summarized as follows:

MC E-step: Givenθθθ = θθθ (k), for i = 1, . . . ,n;

• Simulation Step: For ℓ = 1, . . . ,m, draw b(ℓ,k)
i from f (bi |θθθ (k),yi), as described later in

Subsection 3.3.

• Monte Carlo approximation: Using (5) and the simulated sample above, evaluate

E[g(bi ,ui) |θθθ (k),yi]≈
1
m

m

∑
ℓ=1

Eui
[g(b(ℓ,k)

i ,ui)|θθθ (k),b(ℓ,k)
i ,yi].

M-step: Updateθ̂θθ
(k)

by maximizingQ(θθθ |θ̂θθ (k)
) ≈ 1

m ∑m
l=1∑n

i=1ℓc(θ ; yi ,b
(l ,k)
i ,ui) over θ̂θθ

(k)
,

which leads to the following estimates:

β̂ββp

(k+1)
=

[
n

∑
i=1

{
1
m

m

∑
ℓ=1

xiE (D−1
i )(ℓ,k)x⊤i

}]−1

×
[

n

∑
i=1

{
1
m

m

∑
ℓ=1

[
xiE (D−1

i )(ℓ,k)
[
yi −z⊤i b(ℓ,k)

i −ϑpE (ui)
(ℓ,k)
]]}]

,

σ̂ (k+1) =
1

3Nτ2
p

n

∑
i=1

{
1
m

m

∑
ℓ=1

[
(yi−x⊤i βββ (k+1)

p −zib
(ℓ,k)
i )⊤E (D−1)(ℓ,k)(yi−x⊤i βββ (k+1)

p −zib
(ℓ,k)
i )

−2ϑp(yi−x⊤i βββ (k+1)
p −zib

(ℓ,k)
i )⊤1ni +

τ4
p

4
E (ui)

(ℓ,k)⊤1ni

]}
,

Ψ̂ΨΨ
(k+1)

=
1
n

n

∑
i=1

[
1
m

m

∑
ℓ=1

b(ℓ,k)
i b(ℓ,k)⊤

i

]
,

whereN = ∑n
i=1ni and expressionsE (ui)

(ℓ,k) andE (D−1
i )(ℓ,k) are defined in Appendix A.2 of the

Supplementary Material. Note that for the MC E-step, we needto draw samplesb(ℓ,k)
i , ℓ =

1, . . . ,m, from f (bi |θθθ (k),yi), wherem is the number of Monte Carlo simulations to be used, a
number suggested to be large enough. A simulation method to draw samples fromf (bi |θθθ (k),yi),
is described in Subsection 3.3.

3.2 A SAEM algorithm

As mentioned in Subsection 2.2, the SAEM circumvents the cumbersome problem of simulating
a large number of missing values at every iteration, leadingto a faster and efficient solution than
the MCEM. In summary, the SAEM algorithm proceeds as follows:

E-step: Givenθθθ = θθθ (k) for i = 1, . . . ,n;
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• Simulation step: Draw b(ℓ,k)
i , ℓ= 1, . . . ,m, from f (bi |θθθ (k),yi), for m≤ 20.

• Stochastic approximation: Update the MC approximations for the conditional expecta-
tions by their stochastic approximations, given by

S(k)1,i = S(k−1)
1,i +δk

[
1
m

m

∑
ℓ=1

[xiE (D−1
i )(ℓ,k)x⊤i ]−S(k−1)

1,i

]
,

S(k)2,i = S(k−1)
2,i +δk

[
1
m

m

∑
ℓ=1

[
xiE (D−1

i )(ℓ,k)
[
yi −z⊤i b(ℓ,k)

i −ϑpE (ui)
(ℓ,k)
]]

−S(k−1)
2,i

]
,

S(k)3,i = S(k−1)
3,i +δk

[
1
m

m

∑
ℓ=1

[
(yi−x⊤i βββ (k+1)

p −zib
(ℓ,k)
i )⊤E (D−1)(ℓ,k)(yi−x⊤i βββ (k+1)

p −zib
(ℓ,k)
i )

−2ϑp(yi−x⊤i βββ (k+1)
p −zib

(ℓ,k)
i )⊤1ni +

τ4
p

4
E (ui)

(ℓ,k)⊤1ni

]
−S(k−1)

3,i

]
,

S(k)4,i = S(k−1)
4,i +δk

[
1
m

m

∑
ℓ=1

[b(ℓ,k)
i b(ℓ,k)⊤

i ]−S(k−1)
4,i

]
.

M-step: Updateθ̂θθ
(k)

by maximizingQ(θθθ |θ̂θθ (k)
) over θ̂θθ

(k)
, which leads to the following ex-

pressions:

β̂ββ p

(k+1)
=

[
n

∑
i=1

S(k)1,i

]−1 n

∑
i=1

S(k)2,i ,

σ̂ (k+1) =
1

3Nτ2
p

n

∑
i=1

S(k)3,i ,

Ψ̂(k+1) =
1
n

n

∑
i=1

S(k)4,i . (15)

Given a set of suitable initial valueŝθθθ
(0)

(see Appendix A.1 of the Supplementary Material),

the SAEM iterates till convergence at iterationk, if maxi

{
|θ̂ (k+1)

i − θ̂ (k)
i |

|θ̂ (k)
i |+δ1

}
< δ2, the stopping

criterion, is satisfied for three consecutive times, whereδ1 andδ2 are pre-established small values.
This consecutive evaluation avoids a fake convergence produced by an unlucky Monte Carlo
simulation. As suggested by Searle et al. (1992) (page. 269), we useδ1 = 0.001 andδ2 = 0.0001.
This proposed criterion will need an extremely large numberof iterations (more than usual) in
order to detect parameter convergence that are close to the boundary of the parametric space. In
this case for variance components, a parameter value close to zero will inflate the ratio in above
and the convergence will not be attained even though the likelihood was maximized with few
iterations. As proposed by Booth and Hobert (1999), we also use a second convergence criteria

defined by maxi

{
|θ̂ (k+1)

i −θ̂ (k)
i |√

v̂ar(θ (k)
i )+δ1

}
< δ2, where the parameter estimates change relative to their

standard errors leading to a convergence detection even forbounded parameters. Once again,
δ1 andδ2 are some small pre-assigned values, not necessarily equal to the ones in the previous
criterion. Based on simulation results, we fixδ1 = 0.0001 andδ2 = 0.0002. This stopping criteria
is similar to the one proposed by Bates and Watts (1981) for non-linear least squares.
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3.3 Missing data simulation method

In order to draw samples fromf (bi |yi,θθθ ), we utilize the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970), a MCMC algorithmfor obtaining a sequence of ran-
dom samples from a probability distribution for which direct sampling is not possible. The MH
algorithm proceeds as follows:
Givenθθθ = θθθ (k), for i = 1, . . . ,n;

1. Start with an initial valueb(0,k)
i .

2. Drawb∗
i ∼ h(b∗

i |b
(ℓ−1,k)
i ) from a proposal distribution with the same support as the objective

distribution f (bi |θθθ (k),yi).

3. GenerateU ∼U(0,1).

4. If U > min

{
1,

f
(

b∗
i |θθθ

(k)
,yi

)
h
(

b(0,k)
i |b∗

i

)

f
(

b(0,k)
i |θθθ (k)

,yi

)
h
(

b∗
i |b

(0,k)
i

)

}
, return to the step 2, elseb(ℓ,k)

i = b∗
i

5. Repeat steps 2-4 untilm samples(b(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i ) are drawn frombi |θθθ (k),yi.

Note that the marginal distributionf (bi |yi ,θθθ) (omittingθθθ ) can be represented as

f (bi |yi) ∝ f (yi |bi)× f (bi) ,

wherebi ∼ Nq(0,ΨΨΨ) and f (yi|bi) = ∏ni
j=1 f (yi j |bi), with yi j |bi ∼ ALD

(
x⊤i j βββp+zi j bi ,σ , p

)
.

Since the objective function is a product of two distributions (with both support lying inR),
a suitable choice for the proposal density is a multivariatenormal distribution with the mean
and variance-covariance matrix that are the stochastic approximations of the conditional expec-
tation E(b(k−1)

i |yi) and the conditional variance Var(b(k−1)
i |yi) respectively, obtained from the last

iteration of the SAEM algorithm. This candidate (with possible information about the shape of
the target distribution) leads to better acceptance rate, and consequently a faster algorithm. The

resulting chainb(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i is a MCMC sample from the marginal conditional distribu-

tion f (bi |θ (k),yi). Due the dependent nature of these MCMC samples, at least 10 MC simulations
are suggested.

4 Estimation

4.1 Likelihood Estimation

Given the observed data, the likelihood functionℓo(θθθ |y) of the model defined in (7)-(8) is given
by

ℓo(θθθ |y) =
n

∑
i=1

log f (yi|θθθ )) =
n

∑
i=1

log
∫

Rq
f (yi |bi ;θθθ) f (bi ;θθθ )dbi , (16)

where the integral can be expressed as an expectation with respect tobi , i.e.,Ebi
[ f (yi|bi ;θ)]. The

evaluation of this integral is not available analytically and is often replaced by its MC approxi-
mation involving a large number of simulations. However, alternative importance sampling (IS)
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procedures might require a smaller number of simulations than the typical MC procedure. Fol-
lowing Meza et al. (2012), we can compute this integral usingan IS scheme for any continuous
distribution f̂ (bi ;θθθ ) of bi having the same support asf (bi ;θ). Re-writing (16) as

ℓo(θθθ |y) =
n

∑
i=1

log
∫

Rq
f (yi |bi ;θθθ )

f (bi ;θθθ )
f̂ (bi ;θθθ )

f̂ (bi ;θθθ)dbi .

we can express it as an expectation with respect tob∗
i , whereb∗

i ∼ f̂ (b∗
i ;θ). Thus, the likelihood

function can now be expressed as

ℓo(θθθ |y)≈
n

∑
i=1

log

{
1
m

m

∑
ℓ=1

[
ni

∏
j=1

[ f (yi j |b∗(ℓ)
i ;θθθ )]

f (b∗(ℓ)
i ;θθθ )

f̂ (b∗(ℓ)
i ;θθθ )

]}
, (17)

where{b∗(ℓ)
i }, l = 1, . . . ,m, is a MC sample from̂f (b∗

i ;θθθ ), and f (yi |b∗(ℓ)
i ;θθθ ) is expressed as

∏ni
j=1 f (yi j |b∗(ℓ)

i ;θθθ) due to independence. An efficient choice forf̂ (b∗(ℓ)
i ;θ) is f (bi |yi). There-

fore, we use the same proposal distribution discussed in Subsection 3.3, and generate samples
b∗(ℓ)

i ∼ Nq(µ̂µµbi
, Σ̂ΣΣbi), whereµ̂µµbi

= E(b(w)
i |yi) and Σ̂ΣΣbi = Var(bi |yi), which are estimated empiri-

cally during the last few iterations of the SAEM at convergence.

4.2 Standard error approximation

Louis’ missing information principle (Louis, 1982) relates the score function of the incomplete
data log-likelihood with the complete data log-likelihoodthrough the conditional expectation
∇∇∇o(θθθ)=Eθθθ [∇∇∇c(θθθ ;Ycom|Yobs)], where∇∇∇o(θ)= ∂ℓo(θθθ ;Yobs)/∂θ and∇∇∇c(θθθ )= ∂ℓc(θ ;Ycom)/∂θθθ
are the score functions for the incomplete and complete data, respectively. As defined in Meilij-
son (1989), the empirical information matrix can be computed as

Ie(θθθ |y) =
n

∑
i=1

s(yi|θθθ )s⊤(yi |θ̂θθ)−
1
n

S(y|θθθ)S⊤(y|θθθ), (18)

whereS(y|θθθ) = ∑n
i=1s(yi|θθθ ), with s(yi |θθθ) the empirical score function for thei-th individual.

Replacingθθθ by its ML estimatorθ̂θθ and considering∇∇∇o(θ̂θθ ) = 0, equation (18) takes the simple
form

Ie(θ̂θθ |y) =
n

∑
i=1

s(yi|θ̂θθ )s⊤(yi |θ̂θθ). (19)

At thekth iteration, the empirical score function for thei-th subject can be computed as

s(yi |θθθ)(k) = s(yi |θθθ)(k−1)+δk

[
1
m

m

∑
ℓ=1

s(yi ,q
(k,ℓ);θθθ (k))−s(yi |θθθ)(k−1)

]
, (20)

whereq(ℓ,k), ℓ = 1, . . . ,m, are the simulated missing values drawn from the conditionaldistribu-
tion f (·|θ (k−1),yi). Thus, at iterationk, the observed information matrix can be approximated as
Ie(θθθ |y)(k) = ∑n

i=1s(yi |θθθ )(k) s⊤(yi |θθθ )(k), such that at convergence,I−1
e (θ̂θθ |y) = (Ie(θθθ |y)|θθθ=θ̂θθ )

−1

is an estimate of the covariance matrix of the parameter estimates. Expressions for the elements
of the score vector with respect toθθθ are given in Appendix A.3 of the Supplementary Material.
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Figure 2: Bias, Standard Deviation and RMSE forβ1 (upper panel) andβ2 (lower panel) for
varying sample sizes over the quantilesp= 0.05, 0.10, 0.50, 0.90, 0.95.

5 Simulation studies

In this section, the finite sample performance of the proposed algorithm and its performance
comparison with the Geraci and Bottai (2014) method is evaluated via simulation studies. These
computational procedures were implemented using theR software (R Core Team, 2014). In
particular, we consider the following linear mixed model:

yi j = x⊤i j βββ +zi j bi + εi j , i = 1, . . . ,n, j = 1, . . . ,3, (21)

where the goal is to estimate the fixed effects parametersβββ for a grid of percentilesp= {0.05,0.10,0.50,
0.90,0.95}. We simulated a 3×3 design matrixx⊤i j for the fixed effectsβββ , where the first column
corresponds to the intercept and the other columns generated from aN2(0, I2) density, for all
i = 1, . . . ,n. We also simulated a 3×2 design matrix associated with the random effects, with the
columns distributed asN2(0, I2). The fixed effects parameters were chosen asβ1 = 0.8, β2 = 0.5
and β3 = 1, σ = 0.20, and the matrixΨΨΨ with elementsΨ11 = 0.8, Ψ12 = 0.5 andΨ22 = 1.
For varying sample sizes ofn = 50, 100, 200 and 300, we generate 100 data samples for each
scenario. In addition, we also choosem= 20,c= 0.2 andW = 500.

For all scenarios, we compute the square root of the mean square error (RMSE), the bias
(Bias) and the Monte carlo standard deviation (MC-Sd) for each parameter over the 100 repli-

cates. They are defined as MC-Sd(θ̂i)=

√
1
99 ∑100

j=1

(
θ̂i

( j)− θ̂i

)2

, Bias(θ̂i)= θ̂i−θi , and RMSE(θ̂i)=

√
MC-Sd2(θ̂i)+Bias2(θ̂i), whereθ̂i =

1
100∑100

j=1 θ̂ ( j)
i andθi

( j) is the estimate ofθi from the j-
th sample,j = 1. . .100. In addition, we also computed the average of the standard deviations
(IM-Sd) obtained via the observed information matrix derived in Subsection 4.2 and the 95%
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Table 1: Monte Carlo standard deviation (MC-Sd), mean standard deviation (IM-Sd) and Monte
Carlo coverage probability (MC-CP) estimates of the fixed effects β1 and β2 from fitting the
QR-LMM under various quantiles for sample sizen= 100.

β1 β2

Quantile (%) MC-Sd IM-Sd MC-CP MC-Sd IM-Sd MC-CP
5 0.073 0.060 90 0.067 0.059 90
10 0.045 0.044 95 0.047 0.044 96
50 0.022 0.024 97 0.024 0.025 96
90 0.045 0.045 92 0.047 0.044 96
95 0.060 0.056 88 0.071 0.056 83

coverage probability (MC-CP) as CP(θ̂i) =
1

100∑100
j=1 I(θi ∈ [θ̂i,LCL, θ̂i,UCL]), whereI is the indica-

tor function such thatθi lies in the interval[θ̂i,LCL, θ̂i,UCL], with θ̂i,LCL andθ̂i,UCL as the estimated
lower and upper bounds of the 95% CIs, respectively.

Table 2:Simulation 1: Root Mean Squared Error (RMSE) for the fixed effectsβ0, β1, β2 and the nuisance
parameterσ , obtained after fitting the QRLMM and the Geraci (2014) modelto simulated data under
various settings of quantiles and sample sizes.

RMSE
β0 β1 β2 σ

Quantile (%) n SAEM Geraci SAEM Geraci SAEM Geraci SAEM Geraci
5 50 0.249 0.622 0.199 0.311 0.230 0.296 0.024 0.046

100 0.209 0.496 0.134 0.180 0.115 0.165 0.017 0.037
200 0.195 0.303 0.084 0.099 0.090 0.137 0.017 0.029
300 0.163 0.345 0.075 0.100 0.072 0.101 0.012 0.031

10 50 0.159 0.382 0.144 0.187 0.142 0.201 0.023 0.048
100 0.112 0.355 0.094 0.117 0.084 0.130 0.019 0.048
200 0.082 0.231 0.052 0.087 0.061 0.081 0.017 0.036
300 0.073 0.223 0.045 0.072 0.047 0.076 0.011 0.034

50 50 0.063 0.107 0.063 0.090 0.064 0.102 0.025 0.174
100 0.042 0.052 0.040 0.056 0.043 0.070 0.021 0.196
200 0.027 0.053 0.026 0.048 0.028 0.039 0.016 0.164
300 0.024 0.034 0.022 0.022 0.024 0.040 0.012 0.180

90 50 0.160 0.389 0.138 0.159 0.130 0.177 0.025 0.050
100 0.102 0.394 0.089 0.100 0.071 0.126 0.019 0.051
200 0.085 0.240 0.054 0.097 0.062 0.078 0.014 0.038
300 0.065 0.276 0.045 0.066 0.047 0.064 0.011 0.038

95 50 0.255 0.552 0.172 0.255 0.200 0.243 0.020 0.040
100 0.233 0.470 0.156 0.169 0.135 0.161 0.020 0.036
200 0.146 0.423 0.080 0.160 0.105 0.106 0.015 0.038
300 0.157 0.468 0.077 0.113 0.071 0.061 0.014 0.036

The results are summarized in Figure 2. We observe that theBias, SD andRMSEfor the
regression parametersβ1 andβ2 tends to approach zero with increasing sample size (n), reveal-
ing that the ML estimates obtained via the proposed SAEM algorithm are conformable to the
expected asymptotic properties. In addition, Table 1 presents the IM Sd, MC-Sd and MC-CP for
β1 andβ2 across various quantiles. The estimates of MC-Sd and IM-Sd are very close, hence we
can infer that the asymptotic approximation of the parameter standard errors are reliable. Fur-

13



thermore, as expected, we observe that the MC-CP remains lower for extreme quantiles.

Finally, we compare the performance of SAEM algorithm with the approximate method pro-
posed by Geraci (2014). The Geraci’s algorithm can be implemented using theR packagelqmm().
The results are presented in Table 2 and Figure B.1 (Supplementary Material). We observe that
the RMSE from the proposed SAEM algorithm are lower than Geraci method across all scenarios,
with the differences considerably higher for the extreme quantiles. Finally, Figure B.2 (Supple-
mentary Material) that compares the differences in SD between the two methods for fixed effects
β1 andβ2 at specified quantiles reveals that the SD are mostly smallerfor the SAEM method.
Thus, we conclude that the SAEM algorithm produces more precise estimates.

6 Applications

In this section, we illustrate the application of our methodto two interesting longitudinal datasets
from the literature via our developedR packageqrLMM, currently available for free download
from theR CRAN (Comprehensive R Archive Network).

6.1 Cholesterol data

The Framingham cholesterol study generated a benchmark dataset (Zhang and Davidian, 2001)
for longitudinal analysis to examine the role of serum cholesterol as a risk factor for the evolution
of cardiovascular disease. We analyze this dataset with theaim of explaining the full conditional
distribution of the serum cholesterol as a function of a set of covariates of interest via modelling
a grid of response quantiles. We fit a LMM model to the data as specified by

Yi j = β0+β1genderi +β2agei +b0i +b1iti j + εi j , (22)

whereYi j is the cholesterol level (divided by 100) at thejth time point for theith subject,
ti j = (τ −5)/10 whereτ is the time measured in years from the start of the study, age denotes
the subject’s baseline age, gender is the dichotomous gender (0=female, 1=male),b0i andb1i the
random intercept and slope, respectively, for subjecti, andεi j the measurement error term, for
200 randomly selected subjects.

After fitting the QR-LMM over the gridp = {0.05,0.10, . . . ,0.95}, we present a graphical
summary of the results in Figure 3. The figure displays the 95%confidence band for the fixed ef-
fects parametersβ0,β1,β2, and for the nuisance parameterσ . The solid lines represent theQ0.025
andQ0.975percentiles, obtained from the estimated standard errors defined in Subsection 4.2. The
figure reveals that the effect of gender and age become more prominent with increasing condi-
tional quantiles (p). In addition, although age exhibits a positive influence onthe cholesterol level
across all quantiles, the confidence band for gender includes 0 across all quantiles, and hence its
effect is non-significant. The estimated nuisance parameter σ is symmetric aboutp= 0.5, taking
its maximum value at that point and decreasing for the extreme quantiles. Figure B.3 (Supple-
mentary Material) plots the fitted regression lines for the quantiles 0.10,0.25,0.50(mean),0.75
and 0.90 by gender. From this figure, it is clear how the extreme quantiles capture the full data
variability and detect some atypical observations. The intercept of the quantile functions look
very similar for both panels because of the non-significanceof gender.
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6.2 Orthodontic distance growth data

A second application was developed using a data set form a longitudinal orthodontic study (Pot-
thoff and Roy, 1964; Pinheiro et al., 2001) performed at the University of North Carolina Dental
School. Here, researchers measured the distance between the pituitary and the pterygomaxillary
fissure (two points that are easily identified on x-ray exposures of the side of the head) for 27
children (16 boys and 11 girls) every two years from age 8 until age 14. Similar to Application
1, we fit the following LMM to the data:

Yi j = β0+β1genderi +β2ti j +b0i +b1iti j + εi j , (23)

p0
whereYi j is the distance between the pituitary and the pterygomaxillary fissure (in mm) at the
jth time for theith child, ti j is the child’s age at timej taking values 8, 10, 12, and 14 years,
gender is a dichotomous variable (0=female, 1=male) for child i andεi j the random measurement
error term. Initial exploratory plots for 10 random children in the left panel of Figure B.4 (Sup-
plementary Material) suggest an increasing distance with respect to age. The individual profiles
by gender (right panel) show differences between distancesfor boys and girls (distance for boys
greater than those for girls), and hence we could expect a significant gender effect. Once again,
after fitting the QR-LMM over the gridp= {0.05,0.10, . . . ,0.95}, the point estimates and asso-
ciated 95% confidence bands for model parameters are presented in Figure 4. From the figure,
we infer that the effect of gender and age are significant across all quantiles, with their effect
increasing for higher conditional quantiles. Effect of Ageis always positive across all quantiles,
with a higher effect at the two extremes.σ behaves the same as in Application 1. Figure B.5
(Supplementary Material) plots the fitted regression linesfor the quantiles 0.10,0.25,0.50,0.75
and 0.90, overlayed with the individual profiles (gray solid lines), by gender. These fits cap-
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Figure 3: Point estimates (center solid line) and 95% confidence intervals for model parameters after
fitting the QR-LMM using theqrLMM package to the Cholesterol data across various quantiles. The inter-
polated curves are spline-smoothed.
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β σ

Figure 4: Point estimates (center solid line) and 95% confidence intervals for model parameters after
fitting the QR-LMM using theqrLMM package to the orthodontic growth distance data across various
quantiles. The interpolated curves are spline-smoothed.

ture the variability of the individual profiles, and also differ by gender due to its significance
in the model. TheR package also produces graphical summaries of point estimates and confi-
dence intervals (95% by default) across various quantiles,as presented in Figures 3 and 4. Trace
plots showing convergence of these estimates are presentedin Figure B.6 (Supplementary Mate-
rial). For example, for the 75th quantile, we can confirm thatthe convergence parameters for the
SAEM algorithm (M = 10, c= 0.25 andW = 300) has been set adequately leading to a quick
convergence in distribution within the first 75 iterations,and then converging almost surely to a
local maxima in a total of 300 iterations. Sample output fromtheqrLMM package is provided in
Appendix C of the Supplementary Material.

7 Conclusions

In this paper, we developed a likelihood-based inference for QR-LMM with the likelihood func-
tion based on the ALD. The ALD presents a convenient framework for the implementation of
the SAEM algorithm leading to the exact ML estimation of the parameters. The methodology is
illustrated via application to two longitudinal clinical datasets. We believe this paper is the first
attempt for exact ML estimation in the context of QR-LMMs, and thus provides an improvement
over the Geraci and Bottai (2014) method. The methods developed are readily implementable
via theR packageqrLMM().

Although the QR-LMM considered here has shown great flexibility to quantify the entire
conditional distribution of the outcome variable, its robustness against outliers can be seriously
affected by the presence of skewness and thick-tails. Recently, Lachos et al. (2010) proposed a
remedy to accommodate these using scale mixtures of skew-normal distributions in the random
effects. We conjecture that methodology can be transferredto the QR-LMM framework, and
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should yield satisfactory results at the expense of additional complexity in implementation. An
in-depth investigation of such extension is beyond the scope of the present paper, but certainly an
interesting topic for future research.

APPENDIX A Some results on SAEM implementation

A.1 A Gibbs Sampler Algorithm

In order to draw a sample fromf (bi ,ui |yi)we can use the Gibbs Sampler, an Markov chain Monte
Carlo (MCMC) algorithm proposed by (Casella and George, 1992) for obtaining a sequence of
observations which are approximated from the joint probability distribution of two or several
random variables just using their full conditional distributions. Computing the full conditional
distributionsf (bi |ui ,yi) and f (ui |bi ,yi), we have for the first one that

f (bi |yi,ui) ∝ f (yi |bi ,ui) f (bi),

∝ φni

(
yi |X⊤

i βββ p+Z ibi +ϑpui ,στ2
pD(ui)

)
×φq(bi |0,ΨΨΨ) (24)

so we have a product of multivariate normal densities which solution is based in the next lemma:

Lemma 1. Simplifying the notation above it follows that

φn(y|Xβββ +Zb,ΩΩΩ)φq(b|0,ΨΨΨ) = φn(y|Xβββ ,ΣΣΣ)φq(b|µµµ1(y−Xβββ ),ΛΛΛ) (25)

where
µµµ1 = ΛΛΛZTΩΩΩ−1, ΣΣΣ = ΩΩΩ+ZΨΨΨZT , ΛΛΛ = (ΨΨΨ−1+ZTΩΩΩ−1Z)−1. (26)

Due the equation (25) from the lemma 2 it leads us to

f (bi |yi,ui) ∝ φni

(
yi | X⊤

i βββ p+ϑpui ,στ2
pD(ui)+Z iΨZ⊤

i

)
×

φq

(
bi |ΛΛΛiZ i

⊤ (στ2
pD(ui)

)−1
(

yi−X⊤
i βββ p−ϑpui

)
,ΛΛΛi

)

whereΛΛΛi =
(
Ψ−1+στ2

pZ⊤
i D(ui)Z i

)−1
. Then dropping the first term of the product by pro-

portionality it’s easy to see thatbi |yi,ui ∼ Nq

(
ΛΛΛiZ⊤

i

(
στ2

pD(ui)
)−1
(

yi−X⊤
i βββ p−ϑpui

)
,ΛΛΛi

)
.

On other hand, for the full conditional distributionf (ui |yi,bi) note that the vectorui |yi ,bi can

be constructed asui |yi ,bi =
[

ui1|yi1,bi ui2|yi2,bi · · · uini |yini ,bi
]⊤

given thatui j
∣∣yi j ,bi ⊥

uik|yik,bi for all j,k= 1,2, . . . ,ni and j 6= k. So, the univariate distribution of thef (ui j |yi j ,bi) is
proportional to the product off (yi j |bi,ui j ) and f (ui j ), a Normal and a Exponential distribution,
that is

f (ui j |yi j ,bi) ∝ φ(yi j
∣∣X⊤

i j βββ p+Z⊤
i j bi +ϑpui j , στ2

pui j )×GUi j (1,σ),

then the Lemma 1 leads us thatui j |yi j ,bi ∼ GIG( 1
2,χi j ,ψ), whereχi j =

∣∣∣yi j−X⊤
i j βββ p−Z⊤

i j bi

∣∣∣
τp
√

σ
and

ψ =
τp

2
√

σ
.

In resume, the Gibbs Sampler proceeds as follow:
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Givenθθθ = θθθ (k) for i = 1, . . . ,n;

(1) Start with suitable initial values(b(0,k)
i ,u(0,k)

i )

(2) Draw b(1,k)
i |yi,u

(0,k)
i ∼ Nq

(
ΛΛΛ(k)

i Z⊤
i

(
σ (k)τ2

pD(u(0,k)
i )

)−1(
yi−X⊤

i βββ (k)
p −ϑpu(0,k)

i

)
,ΛΛΛ(k)

i

)

(3) Draw u(1,k)i j |yi j ,b
(1,k)
i ∼ GIG


1

2
,

∣∣∣∣yi j−X⊤
i j βββ

(k)

p −Z⊤
i j b

(1,k)
i

∣∣∣∣

τp

√
σ (k)

,
τp

2
√

σ (k)


 for all j = 1,2, . . . ,ni

(4) Constructu(1,k)
i |yi ,b

(1,k)
i as

[
u(1,k)i1 |yi1,b

(1,k)
i u(1,k)i2 |yi2,b

(1,k)
i · · · u(1,k)ini

|yini ,b
(1,k)
i

]⊤

(5) Repeat the steps 2-4 until drawmsamples
(

b(1,k)
i ,u(1,k)

i

)
,
(

b(2,k)
i ,u(2,k)

i

)
, . . . ,

(
b(m,k)

i ,u(m,k)
i

)

from bi ,ui |θ (k),yi .

Note that for a given a iterationk and for all i = 1, . . . ,n, drawing from the conditional dis-

tribution of the vectoru(l ,k)
i |yi,b

(l ,k)
i implies to draw from the univariate conditional distributions

u(k)i j |yi j ,b
(k)
i for all j = 1,2, . . . ,ni, so this construction results in a heavy computational algorithm.

A.2 Specification of initial values

It is well known that a smart choice of the initial values of MLestimates can assure a fast con-
vergence of an algorithm to the global maxima solution for the respective likelihood. Obviating
the random effects term, letyi ∼ ALD(x⊤i βββp,σ , p). Next, considering the MLEs ofβββp andσ as
defined in?) for this model, we follow the steps below for the QR-LMM implementation:

1. Compute an initial valuêβββ
(0)

p as

β̂ββ
(0)

p = arg min
βp∈Rk

n

∑
i=1

ρp(yi −x⊤i βββp).

2. Using the initial value for̂βββ
(0)

p obtained above, computêσ (0) as

σ̂ (0) =
1
n

n

∑
i=1

ρp(yi −x⊤i β̂ββ
(0)

p ).

3. Use aq×q identity matrixI q×q for the the initial valueΨΨΨ(0).

A.3 Computing the conditional expectations

Due the independence betweenui j
∣∣yi j ,bi and uik|yik,bi , for all j,k = 1,2, . . . ,ni and j 6= k, we

can writeui |yi ,bi = [ ui1|yi1,bi ui2|yi2,bi · · · uini |yini ,bi ]
⊤. Using this fact, we are able to

compute the conditional expectationsE (ui) andE (D−1
i ) in the following way. Using matrix ex-

pectation properties, we define these expectations as

E (ui) = [E (ui1) E (ui1) · · · E (uini)]
⊤ (27)
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and

E (D−1
i ) = diag(E (u−1

i )) =




E (u−1
i1 ) 0 ... 0

0 E (u−1
i2 ) ... 0

...
...

...
...

0 0 ... E (u−1
ini

)


 . (28)

We already haveui j |yi j ,bi ∼ GIG( 1
2,χi j ,ψ), whereχi j andψ are defined in (14). Then, using

(5), we compute the moments involved in the equations above as E (ui j ) =
χi j
ψ (1+ 1

χi j ψ ) and

E (u−1
i j ) = ψ

χi j
. Thus, for iterationk of the algorithm and for theℓth Monte Carlo realization, we

can computeE (ui)
(ℓ,k) andE [D−1

i ](ℓ,k) using equations (27)-(28) where

E (ui j )
(ℓ,k) =

2|yi j −x⊤i j βββ
(k)
p −z⊤i j b

(ℓ,k)
i |+4σ (k)

τ2
p

and E (u−1
i j )(ℓ,k) =

τ2
p

2|yi j −x⊤i j βββ
(k)
p −z⊤i j b

(ℓ,k)
i |

.

A.4 The empirical information matrix

In light of (10), the complete log-likelihood function can be rewritten as

ℓci(θθθ ) = −3
2

ni logσ − 1
2στ2

p
ζ⊤

i D−1
i ζi −

1
2

log
∣∣ΨΨΨ
∣∣−1

2
b⊤

i ΨΨΨ−1bi−
1
σ

u⊤
i 1ni (29)

whereζi = yi−x⊤i βββp−zibi−ϑpui andθθθ = (βββ⊤
p ,σ ,ααα⊤)⊤. Taking partial derivatives with respect

to θθθ , we have the following score functions:

∂ℓci(θθθ)
∂βββp

=
∂ζi

∂βββ p

∂ℓci(θθθ)
∂ζi

=
1

στ2
p
xiD−1

i ζi ,

and

∂ℓci(θθθ)
∂σ

= −3ni

2
1
σ
+

1
2σ2τ2

p
ζ⊤

i D−1
i ζi+

1
σ2u⊤

i 1ni .

Let ααα be the vector of reduced parameters fromΨΨΨ, the dispersion matrix forbi . Using the trace
properties and differentiating the complete log-likelihood function, we have that

∂ℓci(θθθ)
∂ΨΨΨ

=
∂

∂ΨΨΨ

[
−n

2
log
∣∣ΨΨΨ
∣∣−1

2
tr{ΨΨΨ−1bib⊤

i }
]

= −1
2

tr{ΨΨΨ−1}+ 1
2

tr{ΨΨΨ−1ΨΨΨ−1bib⊤
i }

=
1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}

Next, taking derivatives with respect to a specificα j from ααα based on the chain rule, we have

∂ℓci(θθθ)
∂α j

=
∂ΨΨΨ
∂α j

∂ℓci(θθθ)
∂ΨΨΨ

=
∂ΨΨΨ
∂α j

1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}. (30)
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where, using the fact that tr{ABCD}= (vec(A⊤))⊤(D⊤⊗B)(vec(C)), (30) can be rewritten as

∂ℓci(θθθ )
∂α j

= (vec(∂ΨΨΨ
∂α j

⊤
))⊤

1
2
(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)). (31)

Let Dq be the elimination matrix (?) that transforms the vectorizedΨΨΨ (written as vec(ΨΨΨ))
into its half-vectorized form vech(ΨΨΨ), such thatDqvec(ΨΨΨ) = vech(ΨΨΨ). Using the fact that for

all j = 1, . . . , 1
2q(q+1), the vector(vec(∂ΨΨΨ

∂α j
)⊤)⊤ corresponds to thejth row of the elimination

matrixDq, we can generalize the derivative in (31) for the vector of parametersααα as

∂ℓci(θθθ)
∂ααα

=
1
2
Dq(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)).

Finally, at each iteration, we can compute the empirical information matrix (19) by approximating
the score for the observed log-likelihood using the stochastic approximation given in (20).
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APPENDIX B Figures
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Figure B.1: Comparison of the Bias (upper row) and RMSE (lower row) at the 95-th quantile
from fitting the QR-LMM and the Geraci (2014) model for the fixed effectsβ0, β1 andβ2.
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Figure B.2: Comparison of the Monte Carlo standard deviation for the estimatives ofβ1 andβ2

obtained by the SAEM procedure and the Geraci (2014) algorithm for the set of quantiles 5, 10,
50, 90 and 95.
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Figure B.3: Fitted mean regression overlayed with five different quantile regression lines for the
Cholesterol data, by gender.
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female male

Figure B.4: Orthodontic distance growth data: Individual profiles for 10 random children (Panel
a); Individual profiles for the same children, by gender (Panel b).
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Figure B.5: Fitted mean regression overlayed with five different quantile regression lines for the
Orthodontic distance growth data, by gender.
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Figure B.6: Graphical summary of convergence for the fixed effect parameters, variance compo-
nents of the random effects, and nuisance parameters, generated from theqrLMM package for the
orthodontic distance growth data. The vertical dashed linedelimits the beginning of the almost
sure convergence, as defined by the cut-point parameterc.

26



APPENDIX C Sample output from R packageqrLMM()

-------------------------------------------------

Quantile Regression for Linear Mixed Models

-------------------------------------------------

Quantile = 0.75

Subjects = 27 ; Observations = 108 ; Balanced = 4

-----------

Estimates

-----------

- Fixed effects

Estimate Std. Error z value Pr(>|z|)

beta 1 17.08405 0.53524 31.91831 0

beta 2 2.15393 0.36929 5.83265 0

beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix

z1 z2

z1 0.16106 -0.00887

z2 -0.00887 0.02839

------------------------

Model selection criteria

------------------------

Loglik AIC BIC HQ

Value -216.454 446.907 465.682 454.52

-------

Details

-------

Convergence reached? = FALSE

Iterations = 300 / 300

Criteria = 0.00381

MC sample = 10

Cut point = 0.25

Processing time = 7.590584 mins

Acknowledgements

Bandyopadhyay acknowledges support from the US NIH grants R03DE021762 and R03DE023372.
The research of V. H. Lachos was supported by Grant 305054/2011-2 from Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq-Brazil)and by Grant 2014/02938-9 from
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazil)

27



References

Allassonnière, S., E. Kuhn, A. Trouvé, et al. (2010). Construction of Bayesian deformable models
via a stochastic approximation algorithm: a Convergence study. Bernoulli 16(3), 641–678.

Barndorff-Nielsen, O. E. and N. Shephard (2001). Non-Gaussian Ornstein–Uhlenbeck-based
models and some of their uses in financial economics.Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 63(2), 167–241.

Bates, D. M. and D. G. Watts (1981). A Relative Off set Orthogonality Convergence Criterion
for Nonlinear least Squares.Technometrics 23(2), 179–183.

Booth, J. G. and J. P. Hobert (1999). Maximizing generalizedlinear mixed model likelihoods
with an automated Monte Carlo EM algorithm.Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 61(1), 265–285.

Delyon, B., M. Lavielle, and E. Moulines (1999). Convergence of a stochastic approximation
version of the EM algorithm.Annals of Statistics 27(1), 94–128.

Dempster, A., N. Laird, and D. Rubin (1977). Maximum likelihood from incomplete data via the
EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38.

Fu, L. and Y.-G. Wang (2012). Quantile regression for longitudinal data with a working correla-
tion model.Computational Statistics & Data Analysis 56(8), 2526–2538.

Galvao, A. F. and G. V. Montes-Rojas (2010). Penalized quantile regression for dynamic panel
data.Journal of Statistical Planning and Inference 140(11), 3476–3497.

Galvao Jr, A. F. (2011). Quantile regression for dynamic panel data with fixed effects.Journal
of Econometrics 164(1), 142–157.

Geraci, M. (2014). Linear quantile mixed models: The lqmm package for laplace quantile re-
gression.Journal of Statistical Software 57(13), 1–29.

Geraci, M. and M. Bottai (2007). Quantile regression for longitudinal data using the asymmetric
Laplace distribution.Biostatistics 8(1), 140–154.

Geraci, M. and M. Bottai (2014). Linear quantile mixed models. Statistics and computing 24(3),
461–479.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika 57(1), 97–109.

Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analy-
sis 91(1), 74–89.

Koenker, R. (2005).Quantile Regression. New York, NY: Cambridge University Press.

Kotz, S., T. Kozubowski, and K. Podgorski (2001).The Laplace distribution and generaliza-
tions: A revisit with applications to communications, economics, engineering, and finance.
Birkhauser.

Kuhn, E. and M. Lavielle (2004). Coupling a stochastic approximation version of EM with an
MCMC procedure.ESAIM: Probability and Statistics 8, 115–131.

28



Kuhn, E. and M. Lavielle (2005). Maximum likelihood estimation in nonlinear mixed effects
models.Computational Statistics & Data Analysis 49(4), 1020–1038.

Kuzobowski, T. J. and K. Podgorski (2000). A multivariate and asymmetric generalization of
laplace distribution.Computational Statistics 15(4), 531–540.

Lachos, V. H., P. Ghosh, and R. B. Arellano-Valle (2010). Likelihood based Inference for Skew–
Normal Independent Linear Mixed Models.Statistica Sinica 20(1), 303–322.

Lipsitz, S. R., G. M. Fitzmaurice, G. Molenberghs, and L. P. Zhao (1997). Quantile Regression
Methods for Longitudinal Data with Drop-outs: Applicationto CD4 Cell Counts of Patients
Infected with the Human Immunodeficiency Virus.Journal of the Royal Statistical Society:
Series C (Applied Statistics) 46(4), 463–476.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.
Journal of the Royal Statistical Society - Series B (Methodological) 44(2), 226–233.

Meilijson, I. (1989). A fast improvement to the EM algorithmon its own terms.Journal of the
Royal Statistical Society. Series B (Methodological) 51(1), 127–138.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation
of state calculations by fast computing machines.Journal of Chemical Physics 21, 1087–1092.

Meza, C., F. Osorio, and R. De la Cruz (2012). Estimation in nonlinear mixed-effects models
using heavy-tailed distributions.Statistics and Computing 22, 121–139.

Pinheiro, J. C. and D. M. Bates (2000).Mixed-effects Models in S and S-PLUS. New York, NY:
Springer.

Pinheiro, J. C., C. Liu, and Y. N. Wu (2001). Efficient algorithms for robust estimation in lin-
ear mixed-effects models using the multivariate t distribution. Journal of Computational and
Graphical Statistics 10(2), 249–276.

Potthoff, R. F. and S. Roy (1964). A generalized multivariate analysis of variance model useful
especially for growth curve problems.Biometrika 51(3-4), 313–326.

R Core Team (2014).R: A Language and Environment for Statistical Computing. Vienna, Aus-
tria: R Foundation for Statistical Computing.

Searle, S. R., G. Casella, and C. McCulloch (1992). Variancecomponents, 1992.

Vaida, F. (2005). Parameter convergence for EM and MM algorithms. Statistica Sinica 15(3),
831–840.

Wei, G. C. and M. A. Tanner (1990). A Monte Carlo implementation of the EM algorithm and
the poor man’s data augmentation algorithms.Journal of the American Statistical Associa-
tion 85(411), 699–704.

Wu, C. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statis-
tics 11(1), 95–103.

Yu, K. and R. Moyeed (2001). Bayesian quantile regression.Statistics & Probability Let-
ters 54(4), 437–447.

29



Yuan, Y. and G. Yin (2010). Bayesian quantile regression forlongitudinal studies with nonignor-
able missing data.Biometrics 66(1), 105–114.

Zhang, D. and M. Davidian (2001). Linear mixed models with flexible distributions of random
effects for longitudinal data.Biometrics 57(3), 795–802.

30


