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Abstract

In biomedical studies on HIV RNA dynamics, the viral loads\@eate repeated measures
that are often subjected to (upper and lower) detectiorndinand hence these responses are
either left- or right-censored. Linear and non-linear rdkedfects censored (LMEC/NLMEC)
models are routinely used to analyze these longitudina, deith normality assumptions for
the random effects and residual errors. However, the deiivkerence may not be robust
when these underlying normality assumptions are quedtienapecially presence of outlier-
s and thick-tails. Motivated by this, Matos et al. (2013bjemtly proposed an exact EM-
type algorithm for LMEC/NLMEC models using a multivariatéu8ent’s¢ distribution, with
closed-form expressions at the E-step. In this paper, weldevnfluence diagnostics for
LMEC/NLMEC models using multivariate Studentsdensity, based on the conditional ex-
pectation of the complete data log-likelihood which eliat#s the complexity associated with
the approach of Cook (1977, 1986) for censored mixed-affeatdels. The new method-
ology is illustrated through an application to a longituaiftdlV dataset using the NLMEC
framework. In addition, a simulation study is presentediciiexplores the accuracy of the
proposed measures in detecting influential observatioteavy-tailed censored data under
different perturbation schemes.
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1 Introduction

In AIDS research, the study of the human immunodeficienaysviHIV) dynamics has received
significant attention in the biomedical literature, allagrus to understand the pathogenesis of HIV,
and assess the effectiveness of the anti-retroviral thg®iRV) therapy. Most of the clinical trials
on ARV therapy assess the rates/changes of viral loadsIHRA copies (the amount of actively
replicating virus), which are collected longitudinallyemntime. The viral load is considered a
key primary endpoint because its monitoring is mostly aldd, a failure in the treatment can be
defined virologically, and a new regimen of therapy is reca@nded as soon as virological rebound
occurs (Ndembi et al. 2010). In addition, the individuakVioad trajectories yield large between-
subject variations, and covariates like the CD4 counts ffilnmaber of CD4+T lymphocytes per
microliter of blood) might explain this variation (SattencaLongini Jr 1996). Interest often focus
in formulating the correct linear and nonlinear mixed-effemodels (LME/NLME) to estimate
viral load trajectories, and quantify within- and betweserject variations (Wu 2005; Wu et al.
2010; Qiu and Wu 2010).

However, the statistical modeling of viral load can be davading. First, depending on the
diagnostic assays used, the viral load measures may begdbje upper or lower detection limits
(hence, left or right censored), below and above which theyat quantifiable (Wu 2002). Under
non-trivial censoring proportion, considering adhoc ral&ives (Huang and Dagne 2011) might
lead to bias in fixed effects and variance components essnais alternatives to these crude im-
putation techniques, Vaida et al. (2007); Vaida and Liu @Qfroposed various EM schemes for
LME/NLME with censored responses (henceforth LMEC/NLMEBbdwever, all these methods
assume normality of the between-subject random effectsadthih-subject errors. Even though
normality is mostly a reasonable model assumption, it melydabustness in parameter estimation
under departures from normality, namely, heavy tails arttievs (Pinheiro et al. 2001). Interest-
ingly, censored HIV viral loads do exhibit heavy-tailed beior (Lachos et al. 2011). Although
popular data transformations (say, Box-Cox) might rendenality, or close to normality with
reasonable empirical results, various issues still pevsth these transformations (Lachos et al.

2011). Hence, an appropriate theoretical but ‘robust’ &rmork that avoids data transformation is



desirable. A variety of proposals (both classical and Baygsxist in this direction that uses the
univariate or multivariate-density (Pinheiro et al. 2001, Lin and Lee 2006, 2007) in tr@&ext of
LME/NLME models. Some Bayesian propositions in the contéxteavy-tailed LMEC/NLMEC
models include Lachos et al. (2011) who advocated the usbeohbrmal/independent densi-
ty (Lange and Sinsheimer 1993), while Bandyopadhyay et2@l12) studied the LMEC model
considering both skewness and heavy-tails. Very recektitos et al. (2013b) proposed a full
maximume-likelihood (ML) based inference using a compuwiagily convenient exact ECM algo-
rithm for the LMEC/NLMEC models using the multivariate Sand+ distribution (henceforth, the
t-LMEC/NLMEC model). Here, the E-step yields closed-fornpesssions, and all parameters are
updated (in the M-step) by considering the random comparemd the censored observations as
missing data.

A vast majority of model development in the literature for ERI/NLMEC models focus on
estimating the ‘mean’ function, and hence developing imftigediagnostics is a key in assessing
the effect of a single observation on the predicted sconestfer observations, and consequently
the overall parameter estimates. Although diagnosticthitraditional normality based LME and
LMEC (Matos et al. 2013a) models exist, those for heavyethIMEC/NLMEC models are not
well developed. Influence analysis is generally conducsaalgutwo primary approaches. The first
one is the case-deletion approach (Cook 1977) based on th&negn Cook’s distance. Under
normality assumptions for LME, Banerjee and Frees (1990ddés (1998), Tan et al. (2001)
focused on case-deletion diagnostics for fixed effectsleM®hristensen et al. (1992) considered
a one-step approximation to Cook’s distance for the vagarmnponents. The other approach is
the computationally attractive local influence approachqkC1986), which is a general technique
used to assess the stability of the estimation outputs w#pect to the model inputs. For elliptical
mixed-effects models, this method had been discussed ilitenature by Beckman et al. (1987);
Lesaffre and Verbeke (1998); Zhu and Lee (2001); Lee and B04}®, Osorio et al. (2007); Russo
et al. (2009), among others.

Developing influence diagnostics for LMEC/NLMEC modelshe spirit of Cook (1977, 1986)
leads to the underlying observed log-likelihood function®lving intractable integrals, rendering

the direct application of Cook’s approach to be very difficuhot impossible, since the measures
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involve first and second derivatives of these functions.hia tontext, Zhu and Lee (2001) and
Zhu et al. (2001) developed an unified approach for perfogriocal influence and case-deletion
diagnostics, respectively, for general missing data nsodased on thé&-function, i.e., the con-
ditional expectation of the complete-data log likelihoadhe E-step in the EM algorithm. This
was extended to generalized linear and NLME models by Leexan@004) and Xu et al. (2006),
respectively. Thig)-function approach produces result similar to those okthusing the Cook’s
approach. Recently, Matos et al. (2013a) usedhfsinction approach for developing influence
diagnostics for LMEC/NLMEC models. Stemming from the sanfBcdlty with intractable in-
tegrals (for example, the pdfs of truncated multivariated®ht# distributions) in implementing
the Cook’s diagnostics for theLMEC/NLMEC model of Matos et al. (2013b), we develop case-
deletion and influence diagnostics measures using the agpiaf Zhu et al. (2001) (see also Lee
and Xu 2004; Zhu and Lee 2001). The results presented hepmesaent the robust likelihood-
based inference developed by Matos et al. (2013b) for LME®INC models, appropriate for
longitudinal HIV data.

The rest of this paper is organized as follows. Section 2gmtssthet-LMEC model speci-
fication, and an EM-type algorithm for ML estimation. Senti® presents the global and local
influence approaches for tid MEC model considering various perturbation schemesubjexct-
level and observation-level diagnostics. In Section 4,djneamict-NLMEC model is defined.
The methodology is illustrated in Section 5 using a mothvgtHlV dataset. Section 6 presents a
numerical study comparing the performance of our methotts @ther normality-based methods.

Section 7 concludes, with some possible directions forré&utasearch.

2 Censored linear mixed effect model

Ignoring censoring for the moment, th& ME model of Matos et al. (2013b) is specified as:

yi = XiB+Z;b; + ¢, (1)



where

N.tnﬂrq ) vV aZ:17"'ana (2)
which implies that marginally
b; X 1,00,D,v) and € "~ 1,,(0,06%,,,v), i=1,...n, 3)

wheret,(u, X, v) denotes the pdf of a multivariate Studerdistribution with location vectop,
scale matrix® and degrees of freedom The subscript refers to the subject indek, denotes the

p x p identity matrix;y, = (yi1,...,¥m,) " iS avector of observed continuous responses for subject
1 of dimensiom; x 1; X; is then; x p design matrix associated to tgp x 1 vector) fixed effects;

Z; is then; x ¢ design matrix corresponding to tigex 1 vector of random effectb;; ¢; is the

(n; x 1) vector of random errors and the random effects dispersidrixia = D(«) depends on
unknown parametera. Following Matos et al. (2013b), we consider the case whHezedsponse

Y;; is not fully observed for all, j. Consequently, the observed data foritie subject igQ;, C;),

whereQ); is the vector of censoring level aiicl is the vector of censoring indicators such that

v, < Qi If Ci=1,

v, = Qi If Cij=0. (4)

For simplicity, we assume that the data are left censoretlegiensions to other arbitrary censoring

patterns are immediate.

2.1 The likelihood function

The first step is to treat separately the observed and cehsoraponents of,;. Lety? be the
n¢-vector of observed outcomes amél be then{-vector of censored observations for subject
with (n; = n¢ 4+ n$) such thatC;; = 0 for all elements iny?, and 1 for all elements iry;.
After reorderingy;, Q;, X;, andX; can be partitioned as:; = vec(y?,ys), Q; = vec(Q?, Qf),

X, = (X9, X¢) and¥; = (gg) wherevec(-) denotes the function which stacks vectors or



matrices of the same number of columns. Using propertiesuttivariate Student-distribution,

we have thay? ~ t,,.(X?8, X7, v), andyg|yy, ~ tne (15, S{°, v + n?), where

B = XiB + BT (vi - XiB), 8¢ = <7” - QW)

by 5
v _'_ nZO (2 Y ( )
with 360 = 3¢ — 3313 andQ(y?) = (y¢ — X98) "2 H(y? — X23). Therefore, the

likelihood for the subject is

Li(0ly) = f(QilCi,0) = f(yi < Qily] = Q7,0)f(y7 = Q7l0),

= T (Qlp®, 7% v + nd)tne (Q7[X7B, 27, v) = Li,

whereT,(-|u, X, v) denoted the cdf of the multivariate Studerdistribution with parameterga,
3 andv. The log-likelihood function for the observed data is gi®n((6|y) = >, log L;,
and the estimates obtained by maximizing the log-likelthéanction/(8|y) are the maximum

likelihood estimates (MLES).

2.2 The EM algorithm

The observed log-likelihood function involves complex mgsions, making it very difficult to
work directly with ¢(0|y), either for the ML estimation, or the corresponding influeranal-
ysis. As mentioned above, Matos et al. (2013b) developed Mrtyfge algorithm for thet-
LMEC/NLMEC models by treating = (y,,...,y,)",b=(b/,....b/)T, andu = (uy,...,u,)"
as hypothetical missing data, and augmenting those to teeredd data vectarQ, C), where
Q = vee(Qq,...,Qy), andC = vec(Cy,...,C,). Thus, the resulting complete datayis =
(CT,Q7,y",b" u")T, and the EM-type algorithm is applied to the complete dagdikelihood
function?.(0ly.) = >, (:(0]y.), where

1 ('
Ei(0|yc) = —5 [nz log o® + ;(Yi - X;8 - Zibi)T(Yi - X8 — Zibi>

+1log |D| + u;b; D™'b;] + h(u;|v) + C,



where,C' is a constant that does not depend on the vector paraéeted .(u;|v) is the pdf of
a Gammév /2, v/2) distribution. Given a current vall@k) of 8, the function (the conditional

expectation of the complete data log-likelihood functi@given by

Qo[6" ZQ 016") =" (8, 026") + 3" Qui(al8™), (6)
=1 i=1

where

5 i I | ) ~
0u(B, 028" = gt {a — 3" xT @™ — zab ) +a®8" ' xx,8"
ag

~(k) /\Q(k) _1
and@.;(a|@ ') = —Zlog |D| — tr { ub? 'D
) e AT LD Lo W T oy ub2”
Here,a;,”” = tr<uyi — 2uyb,» Z + ub; Z, ZZ-), uy? = F{uyy; |Qi, Ci,0}; ub? =
~(k ~ (k) ~ N (k: = (B)T

E{ubb|Q:, C;, 0% = 2 AW 450 (2" _gy 3™
—~(k ~(k - R ~(k

ab = B{ubi|Q;, €87} = e (@ — ix.BY); uybi | = E{uiy:b Q. C:, 8"} =

(k) BT N Lo~(k ~ (K
(uy? = — uygk)ﬁ( ) XiT)goiT, with AE ) (02( )

D® 4+ 777,)"! andp® = KEMZZT.

It is easy to observe that the E-step reduces to the Comﬂltatiu/y\? = BE{uyiy, |Qq, Ci,a},

0y, = F{wyiQ;, C;,0}, andti; = E{u;|Q:, C;,8}. These expected values are available in
closed form using Propositions available in Matos et al13h).

Next, the conditional maximization step (CM-step) maximizg(e\@(k)) conditionally with re-

+1)

. . ~(k
spect tod to obtain new estlmate%( as follows:

~(k n e —~(k
gy - (E :aﬁ’“)Xin> § jXT (uyj’c Z.ub, )) 7)
=1

k41 1 & ~(k)T . —~(k ()T ~(k
A = - X @ -z B xxd | @
N 1 = k)
DE+)  — EZUb’? , ()]
=1

where N = »""  n;, and the scale matriP> unstructured withae being the upper triangular

elements ofD. The algorithm is iterated until the distance involving tawaccessive evaluations

(+1

of the log-likelihood,|¢(0 )/E(a(k)) — 1/, is sufficiently small. Here, we do not focus on the

= N (k) (k)T N
XT x.8" " +aPx,8" 8" X!



ML estimation, and the interested might refer to Matos e(2013b) for further details. In the

following section, we derive influence diagnostic measugeg&n the ML estimaté.

3 Influence analysis

Influence diagnostic techniques are used in statisticaleimogito identify aberrant observations,
and assess their impact on model fitting and parameter @gim&rimarily, there are two possible
approaches for detecting these influential observatiohs.riost popular one is the case-deletion
technique proposed by Cook (1977), where the idea is to aaayfitted model after deleting
cases one at a time, or in small groups, and then to studyithpact on the obtained estimates
by using some metric, such as the Cook’s or likelihood distarThe other approach is the local
influence analysis (Cook 1986), where a minor perturbatioth® underlying statistical model

is considered, and the stability of the estimation outpwsisessed. Motivated by the approach
of Zhu et al. (2001) that utilizes th@-function, we develop case-deletion measures, followed by

influence measures for thde MEC model.

3.1 Case-deletion measures

The case-deletion approach is a commonly used scheme tp thteickffects of deleting théh
case/observation from the data set. In the rest of the péagesubscript[i]’ will denote the original
data set with theéth case deleted. Consequently, the log-likelihood fumctiorresponding to the
remaining data is denoted BBy9|Y ;). In order to assess the influence of illecase on the ML
estimated, we need to compare the difference betw@gmnd@, Wheregm = (B[:], o—A?[,»], a[Tﬂ)T is

the maximizer of the function);;(0|0) = E{((6]Y.)|Q, C, 8}, with 6 being the ML estimate
of 8. An observation is regarded as influential if its deletiomeyates considerable influence
on model estimates. In other words,ﬁ@] is fairly far from 0, then theith observation could
considered as influential. Note that, since the estin‘é{;p'rs needed for every case, this scheme
requires a considerable computational effort, parti¢ylf@r large sample sizes. For that reason, a

one-step pseudo approximation (see Cook and Weisberg 882t al. 2001) is used to reduce



the burden. This approximation follows:

~1 —~ e~ o~ . ~ o~
0 =06+{-Q(0]6)}'Qu(6]0), (10)
569~ PQO19) . o 00(0]6)
whereQ(0|6) = Wb:@ represents the Hessian matrix, &pg(6|0) = 50 ]0:0,
i =1,...,n, with its elements are given by
. ~ o~ 1
Q[i}ﬁ(e‘e) = 0Q(0]6)/98 = TQEl[i], (11)
g
. o~ ~ 1
Q[i}zﬂ(g‘e) = an(g‘g)/aJQ = _ﬁEQ[ib (12)
g
Que(016) = 0Q(818)/0cx, (13)
wheref, ;) = Zj;éi X;—(@g - Zﬂ;l\)j - anjB) and Ey;) = Zj?gi(nj - %), with A; = tr(u/y\? —

Q@Z}r@zjzj)—QETXjT(@j—Zizjf)j)JrajBTXjTXjfi'. Finally the elements af;;,(6]6)
are of the form

: a7 1 . ' -
Qfija, (0160) = 3 Ztl’[Dle(r) — DilD(T)Dflub?]'
JFi

Itis necessary to compute the Hessian maig|0) = 3", 92Q;(6|6)/0000",0 = (8", 0%, a™)7:
the parameter vector to develop case-deletion, local infleleand any particular perturbation

schemes, following Zhu and Lee (2001). The Hessian métix (0]6)/0006 " has the following

elements:
920,(0/0) Ly 0PQi010) 1o =
W = —EXZ‘TUin‘, W = —;XZ(U}% — Zjub; — u;X;3),
PO _ , FQl) _ 12
9B0a, 002002 20400 g2l
92Q:(66) 82Q;(016) 1 1 —
e 0, Do itl’(A(S’r‘)) — itr(B(sr)ubi),

whereA (sr) = D7![D(s)D'D(r)—D(s, )] andB(sr) = D' [D(s)D'D(r)+D(r)D'D(s)—
D(s,7))D!, with D(r) = 0D/da,, D(s,7) = 8°D/da,0a,,r,s = 1,...,p*, p* = dim(a)
and: = 1,...,n. After some rearrangement and evaluating these derigativé = 0, we

obtain the Hessian matri@(@@) (see Appendix A) as block-diagonal of the for@(&@) =
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diag((5(616), O,2(0]8), Q. (6]6)) (as inthe normal case, see Matos et al. 2013a), wile(@|0) =
— L3 XXy, Q2 (0]6) = b/2(02)? and Qe (016) = Y 9°Q:(8]6) /00,00, with X =

=1

(X7, X)) andb = S0 (n; — 24, /02) Using (10), the next result proposes the one-step

pseudo approximation cﬂ[i] = (5[;, 52[,»], &[TZ.})T, i =1,...,n. Its proof is straightforward and is

therefore omitted.

Proposition 1. The one-step pseudo approximation for the parameter estsrat thet-LMEC

model with theth case deleted is given by

— (Z X X;) By

Ezm
1
(1+5)

a' = a+{-Qa(66)}"'Qa(6]6)

@
I
@)

Q
|
)

wheref, (;j, oy andQ[i]a(§|§) are asin (11), (12) and (13) respectively= > " | (n; —2A4; /0—2)
and(Qy;(6]6) = Z@QQZ (816)/0a, 00, .

Note that Proposition 1 allows us to assess influence viadle-deletion approach for the
t-LMEC model straightforwardly through computing the ML iesated for the complete data, the
ML estimate@m with theith case deleted, and comparing both estimates using somie,reath
as the Cook’s or likelihood distance. If the difference begw them is fairly large, then thiéh

case is regarded as influential. The generalized Cook dist@hu and Lee 2001) is defined as
GD;(8) = (8 — )" {—((6]6)}(6 — 0),i=1,...,n, (14)
Substituting (10) into (14), we have the approximation
GD}(6) = Qp(8) '{~Q(610)} ' Qu(6), i=1,....n

p
SinceQ(6)6) is a diagonal matrix, this approximation can be writterds! () = Z GD; (),

k=1
where@ = (6y,...,0,)" (for details see Xie et al. 2007). Consequently, for BUMEC model

10



we have

GD}(0) = GD}(B) + GD;}(c*) + GD} (). (15)

3.2 Local Influence

In this section, we consider local influence analysis (Co®86) focusing on the following per-
turbation schemes: the case-weight, scale matrix and mespgerturbation. Here, we consider
both subject-level and observation-level diagnosticse $tbject-level diagnostics identify if a
subject is considered influential or not, and is carried amsalering a perturbation function for
theith subject. However, in modeling longitudinal data, we hiave level of responses, namely,
the subject-level and observation level, and intuitivatyjnfluential subject may/may not contain
influential observations (Pan et al. 2013). Hence, expipaiypical observations at both levels are
warranted. The observation-level diagnostics considartugbation in theth observation of the
ith subject.

The theoretical developments in this section proceed ifrémework of Cook (1986) and Zhu
and Lee (2001). Leb = (wy,...,w,)" be a perturbation vector varying in an open redibic RY
and/.(6,wly.), the complete-data log-likelihood respect to the pertdnmodel induced byw.
We assume there existg € 2, such that.(6,w|y.) = ¢.(0|y.) for all . TheQ-displacement

function f,(w) is defined as follows
Jolw) =2Q (018) ~ @ (8(w)[8) ] .

wheref(w) is the maximum of the functio®)(6, w|8) = E[(.(0, w|y.)|Q, C, 8], which can be
written as) " | w;Q;(86). The local behavior of thé)-displacement function can be analyzed
by using the normal curvatui€y,, 4 of a(w) = (w', fo(w))" atw in the direction of some unit

vectord. It follows that

. . wo~~ )1
Croa=—2d"Qu,d and — Qu, = AL, {-0@10)}  Aw,

9°Q(010)

o
0007 10-0 30w = s

where(8]0) = dAy = = ‘0:9(&;)

. For ourt-LMEC model, we

11



. 2Q(6,w|0) 82Q(6, w|0)
T T s s
considerAy, = (A}, AL, Al)", whereA; = A—aﬁ&ﬂ lw,, Az = W'w“ and
. 82Q(0,w|0)
T T , .
A (AOll?""Aap*)TaWIth Aoﬂ“: W|w07 7":17”‘7p .

3.2.1 Subject-level diagnostics

Case weight perturbation
We consider an arbitrary attribution of weights for the etpd value of the complete-data log-
likelihood function (perturbe®@—function), which may capture departures in general dwast

by writing
Q(6,w|0) = E[(.(0,w|y.)|Q,C,0] = sz (6ly.)|Q.C, 8] = Zw,@ (6]6).

Here,w = (wy,...,w,)" isannx1 vectorandv, = (1,...,1)". It can be shown that the local in-

fluence analysis for this perturbation scheme is equivatetiite case-deletion approach discussed

in Section 3.1. Consequently, we hade; = SX"D(ey,...,€,), Ayz = —55n" + 7xm7,
A, = [8%(3'9), o 8%(5'9)] forr=1,...,p", wheren = (ny,...,n,)", m= (A, .. .,/Aln)T,
. . . . o~ - ~ - 8 i 0 0
D(e,...,€,) is a block-diagonal matrix, witle; = wy, — Z;ub; — u;X;3 and %H =
a,

1 . . /\
—itl’[D_lD(T) — D 'D(r)D 'ub?].

Scale matrix perturbation

In order to study the effects of perturbation on the scaleimat; = oI, + ZDZZ.T, we con-
siderD(w;) = w; 'D, oro?(w;) = w; 'o?, fori = 1,...,n. The non-perturbed model arises when
w, = (1,...,1)". The perturbed)-function follows (6), withD(w;) ando?(w;) in place ofD and
o?, respectively. Considering a perturbationn(matrix of random effects), we hau; = 0,
A,» =0andA,, = 3[g1,...,gx), whereg; = tr(D—lD(r)D—lzjb\?), r=1,...,p*. Perturbation
ono? (the random error variance) yields; = ;—QXTD(el, ce€n), A2 = %ﬂm andAq = 0.
Response perturbation

A general way for perturbing the response varialdlgs « = 1,...,n, j = 1,...,n,, is

12



introduced by considering;;(w) = @Q;; + w;s;j, wheres,; is a known constant. Hence, for the
t-LMEC model, the perturbed response is obtaineg,gs)) < Q;; if C;; = 1, andy;;(w) = Q;;

if Ci; = 0, wherey;;(w) = y;; — w;s;;. Again, the perturbed)-function follows (6), withuy,,
zjy\? and@ replaced byiy;, = uy; — w;s;U;, u/yz = u/y\f — wi(uys] +smuy) +w?s;s] and

e — -/

uyby, = uyb; —w;s;ub/, respectively, wherg; = (s;y,. .., sim,) . The vectoww, = O represents
no perturbation. Finally, we havlls = — = [X{ sy, ..., X Uns,], Ayz = —U%[(u/\yl—zlzjb\l—

nwX108) sy, ..., (Uy, — Znub un,X,,08)"s,], andA, = 0.

3.2.2 Observation-level diagnostics

We proceed as above considering a perturbation vecter(ws, . .., w,) ", wherew; = (w;1, . . ., win,)
and noting that all the previous results for the subjecellevagnostics hold for the observation-
level cases as well. Also, we denate = (w1, ..., Uin,)" , Vi = (Vi1,...,0m,) andg; =

(gih s 7gini)T‘

Case weight perturbation

In this case, we havé\; = —[uy,...,u,], with u;; = X[ (uy;; — ZUEB — aiXijB);
Ay = —%[Vl, oV with v =1 — U%Al-j andA;; = tl’(u/yjj 2uyb”ZT + ubZZTZ i) —
20 XT(uy” zij@i)+aiBTXJinjZ§ andA,, = —i[gi, ..., g.], with g;; = tr(D'D(r)D~(D—

ub?)), r=1,...,p"

Scale matrix perturbation
Similar to the subject-level, we consider perturbationdpandcs?. Consequently, foD we

have thatAs; = 0, A,. = OandA,, = 3[gi,...,8x), With g;; = tr(D*lD(r)Dflzjt;?),

r = 1,...,p*. In addition, a perturbation on? generatesA; = U—g[ul, Coo Uy, With uy; =
XT(UyU ZZ]/I;B - ﬂl ”B) = [Vb e 7Vn]> W|th Vij = #AU and Az] = tl’(u/y?] -

20X, 8 + ub?Z] ;) — 2B le(uy” — Zyjub,) + W X[ X,;8andA, = 0.

Response perturbation

Finally, for the response perturbation case, we hAye= —U%[ul, co ), With u; = XJ,

13



Az = —%[vi, ..., v,], with v; = (@y,; — Ziub; — 4, X,;8) andA,, = 0.

As the reader can note, it is impossible to give details fop@ifturbation schemes that would
be of interest. However, if we can find an appropriatsuch that the perturbed complete data log-
likelihood function/.(0, w|y.) is smooth enough and the pertinent derivatives in the distimo
measures are well-defined, we can conduct the local influenalysis without much difficulty.

In order to quantify the influence of a case in the data, wevolihe method based on the
function M (0); = 3,_, (el where(, = Gi/(G+ ... + () andel = (e},,...,€},)" with
{(Ck,ex), k=1,...,¢g} are eigenvalue—eigenvector pair&cif@wo with(; > ... > ( > (a1 =
... = 0 and orthonormal eigenvectofs;, k = 1, ..., g} (for details see Matos et al. 2013a). The
Ith case may be regarded as influential4{0), is larger than the benchmark (cut-off). Following
Lee and Xu (2004), we consider our benchmarkag)) + 3.55M (0), whereM (0) and SM (0)

are the mean and standard erro{ 81 (0), : [ = 1,..., g} respectively.

4 Censored nonlinear mixed effect model

In this section, we propose the censored nonlinear mixedtefiodel under Studentdistribution
(t--NLMEC). Similar to thet-LMEC model, we denote the number of subjects:bgnd the number
of measurements on thith subject byn;. Ignoring censoring for the moment, let us considgr
the vector incorporating explanatory variables (covaggtthe longitudinal time componef),
By = (Brij»---,Bsi;)" andB = (B1,...,B,) " (p > s). The Student-nonlinear mixed effect

model ¢(-NLME model), can be written as:
Yi = niltiy, Byy) + €, By = d(zij, 8,by), (16)

wherey; = (yi1,...,yin,) ", With y;; the response for subjectat time ¢,;, ni(tij, By;) =
(n(tia, Ba) s - - 0(ting, Bin.)) ', with 7(+) being a nonlinear (known) but differentiable function of
vector-valued mixed-effects paramet@s , € = (1, ..., €:,,,) ' is the random error vectad/.) is

an s-dimensional linear function, arle, = (by;,...,b,)" is the vector of random effectg < s).

14



The joint distribution of(b;, ;) follows (2). From Matos et al. (2013b), the marginal disitibn

is given by

0) = - h n; \Y s itijad Rl abi ) ‘_1 2In~ qbi;Oa ‘_lD
7(v10) H/ / G (1 (b, d(37. 8. 12)), 4071, )6y (b 0, ;' D)

xG(u|v/2,v/2)db;du;,

whereG(-|a, b) denotes the density of a Gamfnab) distribution with mearu/b. The marginal
distribution f(y|@) does not have a closed form because the model function isnearlin the
random effects. However, in order to use all the theory omanfte diagnostics developed above
for the LMEC model, we use the following result proposed bytddaet al. (2013b) which linearizes
thet-NLMEC likelihood in terms ofb; andg.

Proposition 2. Let b; andB be expansion points in a neighborhoodlgfand 3, respectively.

Then, the-NLME model as defined in (2) and (16) has the followiidVE form

Vi=W,B+Hb, +e, i=1,....n, (17)

~ ~ in ind. 1 altl7d i'aN7bi
Whereyl = yz_nz(/gabz)7bl Nd tq(O,D,I/),GZ‘ "\(Ji tni(O,O'QIni,l/),Hi = /'7( J a(sg ﬁ ))

o oni(tij, d ija/Bagi s ~ = ~~
W, = i a(;T ) \ﬂi:Bi and (8, b;) = n;(ti;, d(xi;, 8,b;)) — Hb; — W, 3.

2

b;=b;’

Proof: See Matos et al. (2013b).

For the censored case, this model (17) isLAMEC model with the same structure as (1)-(4). The
model matrices in (17) depend on the current parameter yvahgeneed to be recalculated at each
iteration. The algorithm iterates between the L-, E- and §ibps until convergence. Moreover,
the influence diagnostics foiLMEC discussed earlier in Section 3 can be incorporateagabath

the approximation in (17) to obtain approximate influencggdostics for-NLMEC. In the next
section, we apply these diagnostic methods to the motiy&timgitudinal HIV data in context of a

t-NLMEC model.
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5 Application to HIV Data

5.1 ACTG 315 Dataset

In this section, we reanalyze the HIV viral load data from A@TG 315 clinical trial (Wu 2002),
using thet-NLMEC model. In this study, 46 HIV-1 infected patients wereated with a potent
ARV therapy. Viral load was recorded on days 0, 2, 7, 10, 1428land weeks 8, 12, 24 and 48
after initiation of treatment, with a total of 361 obsereats. Measurements below the detectable
threshold of 100 copies/mL (40 out of 36/1,%) were considered left-censored, and the censoring

process assumed independent of complete data.
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Figure 1: Profiles of viral load in natural Iggscale (Panel a) and CD4 cell count (Panel b) for
four randomly selected subjects from the dataset. The tnataz line is below the detectable level
of viral load (2 = log,(100)).

Figure 1 plots the viral load (in natural Iggscale) and CD4 longitudinal profiles for four
randomly selected patients in the left and right panelgeesvely. Clearly, both the viral load
and CD4 cell count trajectories exhibit distinct pattemgh the rate change in viral load varying
substantially across subjects, possibly reflecting batlobical and systematic associations with

the subject-level covariate CD4. The viral load traje@siinitially exhibit a rapid decay (called
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first-phase decay), and after that some have a slower ddwgdtond-phase), or rebounds back
to the original levels (Liu and Wu 2012). In the spirit of WO@2) who suggested that a bi-phasic

phenomenon might be associated with CD4 counts, we corntsiddollowing NLME model:

yij = 1Og10(P1i€_>\lijtij -+ Pgie_)\Qijtij> + 6ij7
Br; = 109(Pr;) = B1 + bii, Boij = Mij = P2 + bay,

Bsij = 10Q(Pa;) = B3 + bsi, Ba,; = Naij = Pa + BsCD4yj + by (18)

wherey;; is the log,-transformation of the viral loatf (;;) (log-transformation done to stabilize
variance) for subjecith at timet;; (: = 1,2,...,n,j = 1,2,...,n;), P;; and P,; are the base-
line viral loads,\;; and\,;; are the first- and second-phases of viral decay rates reyiregéhe
minimum turnover rate of productively infected cells anigfdly long-lived infected cells, respec-
tively, €, = (€;1,...,€n,) are within-subject random errorgl;; = (Biijs Baij» Bijs Baiz) T and
B = (81, B2, B3, b1, B5) T are the subject-levelth subject at time;;), and population-level param-
eters, respectively,'D4;; indicates the observed CD4 counts at titpeandb; = (by;, .. ., b4i)T
are the subject-level random effects. Note that (18) isvddrfrom the bi-phasic exponential de-

cay modelV (t) = Pie=™t + Pye=?2t of Wu and Ding (1999). Figure 2 (Panel a) presents raw
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Figure 2: Plots of raw density histogram of viral load (Paagldensity histogram of CD4 cell
count (Panel b), and Q-Q plot of CD4 cell count (Panel c) fromHiIV dataset. The vertical line
in (a) is below the detectable level of viral log2l= log,,(100)).
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histogram of the viral load measures, where the viral loadevbthe threshold are substituted by
half the limit, while Figure 2(Panels b and c) display thadgsam and the Q-Q plot of the CD4
cell count, respectively. These plots reveal that bothl Woads and CD4 counts exhibit heavy-
tail behavior, and presence of possible outliers. Hencactommodate these features, we fit the

t-NLMEC model defined in (16) considering the structure giwe(L8).

5.2 Model fitting and Diagnostic analysis

The model fitting uses the approximated ML method given irpBsttion 2, and the ECM algorith-
m presented in Section 2.2. To avoid very small/large esésahich might render the estimation
method unstable, we standardize the baseline CD4 valuésgeestale the original timein days
between 0 and 1. The degrees of freedorms assumed to be known, and using the AIC criterion,
v = 8 which maximizes the profile log-likelihood (See, Figure anel a). This reveals that a fit
using a normality-based LMEC might be inadequate. Furtreehcomparison measures via. the
AIC/BIC criteria that compares the normal ariILMEC models are presented in Table 1, which
show that theé-NLMEC model provided a much improved model fit than the ndromee.

Table 1: ML estimates and model comparison criteria for redramd¢-NLMEC models. SE are
the estimated asymptotic standard errors.

N-NLMEC t-NLMEC
Parameter MLE SE MLE SE
B1 11.6565 0.1810 11.6457 0.1888
B2 1.7584  1.6433 31.7590 1.9054
B3 6.6407 0.3243  6.7695 0.3545
Ba -0.5095 0.9345 -0.1232 0.8980
Bs 0.3972  0.2547 0.3805 0.2378
o2 0.1253 0.1050
v 8
log-like -281.8423 -258.3164
AIC 595.6847 548.6329
BIC 657.9067 610.8549

Because we currently focus on exploring influence diagosdiie details on the estimation and
interpretation of the parameter estimategdare omitted for brevity. Figure 3 (Panel b) displays
how thet-NLMEC model insulates the overall parameter estimates pravides a robust estima-
tion scheme by controlling the influence of these influefdiglying observations (numbered in

the figure), and attributing smaller weightsto these observations.
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Figure 3: Plot of the profile log-likelihood versus the degref freedonm (Panel a), and estimated
weightu; for thet-NLMEC fit (Panel b), with the influential observations nundx

In order to identify outlying observations, we compute thahdlanobis distanaé?(@), i =
1,...,46. Figure 4 (Panels a and b) display the index plodil%@) for the normal and-NLMEC
models, respectively, which reveals that subjetts, #40, #42 and#46 appear to be possible
outliers . Moreover, these subjects have large value& ah both normal and-LMEC models,
suggesting that they aeeoutliers (see Figures 5, Panels a and b). From Figure 5]$@nand d),

subject#2 with the highestl} can be considered &soutlier for both models.

5.2.1 Global influence

In order to evaluate the effect on the ML estimates when sobservation is deleted, we ana-
lyze the GD}(0) plot in Figure 6 (Panel a). The plot reveals that three cagas #24, #40)
are potentially influential on the parameter estimates.urféig 6 (Panels b-d) present plots of
GD}(B), GD}(c?) andGD} () respectively, using Proposition 1. From these figures, viar in
that subjectst17, #42 are influential for3, #17, #40, #42 are influential fow?, and observations

#7, #24, #40 are influential foro.
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Figure 4: Mahalanobis distance 'sNLMEC (Panel a), Mahalanobis distance for normal NLMEC
(Panel b). The influential observations are numbered.

5.2.2 Local influence

Next, we focus on the local influence analysis for the ACTG 8ata, based on/(0), with inter-
est focussing of. We study both the subject-level and observation-levejmtiatics. For both of
these, we use the criteriaW (0); > M (0) +3.5SM(0),i = 1,.. ., 46, to discriminate whether an

observation is influential or not.

Subject-level diagnostics

Figure 7 presents the index plots df(0) under the perturbation schemes discussed in Section
3.2.1. We find that only subjegt3 appears influential under response variable perturbadiod,

no other subjects are influential under the other pertwhachemes. Interestingly, this subject

does not have censored responses over time.
Observation-level diagnostics

Using the perturbation schemes provided in Section 3.2g2ir€ 8 presents the observation-level

diagnostics for the dataset. Note that, in the case weight-arperturbation schemes, the ob-

20



2
dy,

Ne

Index

(©)

a2

2
dy,

20

15

10

10

17
40
)
042
o
o
o
o
o
° ° Oo ° ° o °©
° 0% o
o ° o o o
o © o ° ° o ° oo
o
. oo ° o, °
T T T T
10 20 30 40
Index
.
2
o o
o
o
o
o
o
o
o
000
o ° oo
o
o
o ° o o
0o
o
o o ° © o ¢ o ° % °
o oo © o
T T T T
10 20 30 40
Index

Figure 5: e-outliers detection for-NLMEC model (Panel a)e-outliers detection for normal
NLMEC model (Panel b)b-outliers detection for-NLMEC model (Panel c), ant-outliers de-
tection for normal NLMEC model (Panel d). The influential ebstions are numbered.

21



©
. g 7 .
7 17 42
n 24
P .
40 Qo o
< 4 . Q A ° o
o o
)
o
- O a
g : =3 :
o © oo° o
o o © ° o o o]
~
° o
° ) o
o
— o o
° ° ° &5 o © o
o ° o o
° 4 oo™, ° o o © o ° © 0% o, ° oo o ° 5
o % oo 0 0600 o OO oo ° o ° ° o .
T T T T T g o T T T T
0 10 20 30 40 0 10 20 30 40
Index Index
(a) (b)
L .
42 7
< v
o i
24
~ A .
™
S 40
— o
Nb g ™ 7 o
5‘ ~ 17 e a
O o7 o o
«~ 4 o o ° o
40 ¢
- ° ° o
P o
— o o
[e] °oo0 o
° o o© o ° o ® © o o ¢ o
g | ©600000 260990 996 60000000  60°6°000 o 0°° o J % o, © 0 0065° 0 o % ° o
T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40
Index Index
(©) (d)

Figure 6: Global influence. Approximate generalized Codissance5 D} (0) (Panel a)G D} for
subset3 (Panel b),G D} for subset? (Panel c), and:D; for subsetx (Panel d). The influential
observations are numbered.

servations#53 (subject#7), #76 (subject#10) and#257 (subject#33) could be considered as
influential. In the case of the perturbation on the respoas@ble, we find that observatio#23
(subject#£2), #61 (subject#8), #163 (subject#21), #265 (subject#34) and#348 (subject#44)
appear as influential. For perturbationDpnwe do not find influential observations. Interestingly,

all these detected observations correspond to the lastvaaseme of the respective subjects.
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Figure 7:Index plot of M (0) for assessing local influence @hunder case weight perturbation (Panel a),
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6 Simulation studies

To examine the performance of the proposed diagnostic mesgr finite samples, we conduct a

simulation study focussing on subject-level diagnostWs.consider the non-linear mixed-effects
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Figure 8:Index plot of M (0) for assessing local influence @hunder case weight perturbation (Panel a),
perturbation oD (Panel b), perturbation s’ (Panel c), and perturbation on the response variable (Panel
d). The influential observations are numbered.

model given by

B+ bit
— (B2 + bi2)]/B3)

G i=1,....15 j=1,...,10,
Yij = 1+ exp(—[t;; Ty 1 J

wheret;; = 100, 267,433, 600, 767, 933, 1100, 1267, 1433, 1600 for all .. The random effectb; =

(bi1,bio) ", and the error term; = (€;1,...,€;10) ' are non-correlated with
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bi | ;.4 0 D o0

2ty : A, i=1,...,15.
€; 0 0 0'2110

We set the fixed-effect8’ = (5, 5, 85) = (200,700, 350), the between-subject covariance
4 =2

matrix D = , and the within-subject variancg® = 25. Under this model we
-2 25

consider the following perturbation schemes:

(a) Replace the fixed effec$by 23 to generate the responses of the 1st suljject
(b) Replace3 by 33 and,

(c) Replaces by 4.

Table 2: Simulated data. The values in the table denote% tbkcorrectly identifying the influ-
ential observations using case-deletion, case weight atdxi perturbation schemes from 500
simulated datasets undet-DlLMEC model.

% of censoring
Case-deletion measuré' ;) 0% 5% 10% 20% 30%

Pert.23 66.8 66.8 748 758 81.8
Pert.33 83.0 834 858 91.6 94.8
Pert.43 93.0 93.2 942 974 984
Case-weight perturbation 0% 5% 10% 20% 30%
Pert.23 66.8 66.8 74.8 75.8 81.8
Pert.33 83.0 834 858 91.6 94.8
Pert.43 93.0 93.2 942 974 984
Perturbation omr? 0% 5% 10% 20% 30%
Pert.23 13.0 144 18.8 19.2 15.2
Pert.33 3.60 3.60 460 6.00 6.00
Pert.43 0.40 0.60 0.80 1.00 0.60
Perturbation oD 0% 5% 10% 20% 30%
Pert.23 83.8 836 83.2 83.0 848
Pert.33 950 946 940 948 974
Pert.43 97.2 978 976 98.8 99.0

The diagnostic measures were computed for 500 simulated s#d$ under various settings of

censoring proportions, say 0%, 5%, 10%, 20% and 30%. Tabkparts (in percentage) the
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number of times the measures correctly identifieas the most influential.

To summarize, when the perturbation is high (v23, or 43), the percentage of correctly de-
tecting atypical observations increases on the overalls iBhbecause the Studentistribution
is a relatively heavy-tailed (as compared to the normal), le@nce can accommodate small per-
turbations (for exampleg) in the data, and has lesser ability to detect influentiakoleions
as compared to the normal for smaller perturbations. Istergly, the % of correct detection in-
creases with the % increase in censored proportions as prelliding more reliability on these
measures. Also, the perturbation on titedo not appear appealing, with a low percentage of
correct detection; however the perturbationIdrieads to a substantial increases in detection. A
possible explanation for this fact is that a perturbatioth&tfixed-effects of one subject contributes

to increasing the between-subject variance, but the wihlyject variance remains constant.

7 Conclusions

This article proposes influence diagnostic tools for detgautliers and/or influential observations
in the context of linear and non-linear mixed-effects ceedanodel, where the joint distribution of
the random error and random effects follows the Studeingtribution. It supplements the recently
published work of Matos et al. (2013b) which considers estiom and inference of those cen-
sored models using an EM-type algorithm, and also presemisra robust influence diagnostics
framework as compared to the normality-based derivatigriddtos et al. (2013a). Our proposed
method relies on th€ function, the conditional expectation of the logarithmioé complete-data
likelihood, which facilitates the theoretical developrhehthe ECM algorithm in the context of
mixed-effects models. The non-linear mixed-effects mddehulation is mathematically (and
computationally) feasible through a linearization. A slation study compares the outlier detec-
tion accuracy under different censoring and perturbatwbeses. For practical demonstration, the
methodology is applied to an interesting longitudinal Hidtaket. The methodology is implement-
ed using th&k software (codes available upon request from the first athosviding practitioners
with a convenient tool for further applications in their daim

As this is the first work in developing robust outlier detentischemes for censored mixed-
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effects models, we decided to keep our estimation strateggmeple enough for easy implemen-
tation. Our current proposal considers an independentiwgibject covariance structure, viz.
o2I,.. Nevertheless, it can be extended to different unstrudtemvariance matrices (such as
AR(1), or ante-dependence) following the work of Pan et201@). In addition, some important
covariates (such as CD4) in HIV research are often measutbdwveasurement error (Wu 2002),
and that might also exert influence on the overall outlieedbn strategies. All these issues are

currently under investigation, and we plan to tackle thesefuture paper.

8 Appendix

8.1 ()(0)6) is a block-diagonal matrix

From the EM-algorithm, we know th@Q(@\@)/@O}Ozé — (. Consequenlty, we have the follow-
ing in thet-LMEC model:

ixj (@y, — Ziub;) = imxjxiﬁ,
=1 =1

S (n — tr(uy? - 2uyb,Z] +ub?Z]Z,) = S (2B X[ (ay, - Zub,) — 0,8 X]X,B),
i=1 i=1

9Q(616)/dac = 0,

Finally, note that from the relationships proposed abdwe térm

9°Q,(018) 1

T/,—~ - - J—
DO X, - 2y - 0X,8) =0

and therefore the matri@(@\@) is block-diagonal.
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