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Abstract

In biomedical studies on HIV RNA dynamics, the viral loads generate repeated measures
that are often subjected to (upper and lower) detection limits, and hence these responses are
either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC)
models are routinely used to analyze these longitudinal data, with normality assumptions for
the random effects and residual errors. However, the derived inference may not be robust
when these underlying normality assumptions are questionable, specially presence of outlier-
s and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-
type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with
closed-form expressions at the E-step. In this paper, we develop influence diagnostics for
LMEC/NLMEC models using multivariate Student’s-t density, based on the conditional ex-
pectation of the complete data log-likelihood which eliminates the complexity associated with
the approach of Cook (1977, 1986) for censored mixed-effects models. The new method-
ology is illustrated through an application to a longitudinal HIV dataset using the NLMEC
framework. In addition, a simulation study is presented, which explores the accuracy of the
proposed measures in detecting influential observations inheavy-tailed censored data under
different perturbation schemes.
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1 Introduction

In AIDS research, the study of the human immunodeficiency virus (HIV) dynamics has received

significant attention in the biomedical literature, allowing us to understand the pathogenesis of HIV,

and assess the effectiveness of the anti-retroviral therapy (ARV) therapy. Most of the clinical trials

on ARV therapy assess the rates/changes of viral loads/HIV-1 RNA copies (the amount of actively

replicating virus), which are collected longitudinally over time. The viral load is considered a

key primary endpoint because its monitoring is mostly available, a failure in the treatment can be

defined virologically, and a new regimen of therapy is recommended as soon as virological rebound

occurs (Ndembi et al. 2010). In addition, the individual viral load trajectories yield large between-

subject variations, and covariates like the CD4 counts (thenumber of CD4+T lymphocytes per

microliter of blood) might explain this variation (Satten and Longini Jr 1996). Interest often focus

in formulating the correct linear and nonlinear mixed-effects models (LME/NLME) to estimate

viral load trajectories, and quantify within- and between-subject variations (Wu 2005; Wu et al.

2010; Qiu and Wu 2010).

However, the statistical modeling of viral load can be challenging. First, depending on the

diagnostic assays used, the viral load measures may be subjected to upper or lower detection limits

(hence, left or right censored), below and above which they are not quantifiable (Wu 2002). Under

non-trivial censoring proportion, considering adhoc alternatives (Huang and Dagne 2011) might

lead to bias in fixed effects and variance components estimates. As alternatives to these crude im-

putation techniques, Vaida et al. (2007); Vaida and Liu (2009) proposed various EM schemes for

LME/NLME with censored responses (henceforth LMEC/NLMEC). However, all these methods

assume normality of the between-subject random effects andwithin-subject errors. Even though

normality is mostly a reasonable model assumption, it may lack robustness in parameter estimation

under departures from normality, namely, heavy tails and outliers (Pinheiro et al. 2001). Interest-

ingly, censored HIV viral loads do exhibit heavy-tailed behavior (Lachos et al. 2011). Although

popular data transformations (say, Box-Cox) might render normality, or close to normality with

reasonable empirical results, various issues still persist with these transformations (Lachos et al.

2011). Hence, an appropriate theoretical but ‘robust’ framework that avoids data transformation is
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desirable. A variety of proposals (both classical and Bayesian) exist in this direction that uses the

univariate or multivariate-t density (Pinheiro et al. 2001; Lin and Lee 2006, 2007) in the context of

LME/NLME models. Some Bayesian propositions in the contextof heavy-tailed LMEC/NLMEC

models include Lachos et al. (2011) who advocated the use of the normal/independent densi-

ty (Lange and Sinsheimer 1993), while Bandyopadhyay et al. (2012) studied the LMEC model

considering both skewness and heavy-tails. Very recently,Matos et al. (2013b) proposed a full

maximum-likelihood (ML) based inference using a computationally convenient exact ECM algo-

rithm for the LMEC/NLMEC models using the multivariate Student-t distribution (henceforth, the

t-LMEC/NLMEC model). Here, the E-step yields closed-form expressions, and all parameters are

updated (in the M-step) by considering the random components and the censored observations as

missing data.

A vast majority of model development in the literature for LMEC/NLMEC models focus on

estimating the ‘mean’ function, and hence developing influence diagnostics is a key in assessing

the effect of a single observation on the predicted scores for other observations, and consequently

the overall parameter estimates. Although diagnostics forthe traditional normality based LME and

LMEC (Matos et al. 2013a) models exist, those for heavy-tailed LMEC/NLMEC models are not

well developed. Influence analysis is generally conducted using two primary approaches. The first

one is the case-deletion approach (Cook 1977) based on the well-known Cook’s distance. Under

normality assumptions for LME, Banerjee and Frees (1997), Hodges (1998), Tan et al. (2001)

focused on case-deletion diagnostics for fixed effects, while Christensen et al. (1992) considered

a one-step approximation to Cook’s distance for the variance components. The other approach is

the computationally attractive local influence approach (Cook 1986), which is a general technique

used to assess the stability of the estimation outputs with respect to the model inputs. For elliptical

mixed-effects models, this method had been discussed in theliterature by Beckman et al. (1987);

Lesaffre and Verbeke (1998); Zhu and Lee (2001); Lee and Xu (2004); Osorio et al. (2007); Russo

et al. (2009), among others.

Developing influence diagnostics for LMEC/NLMEC models in the spirit of Cook (1977, 1986)

leads to the underlying observed log-likelihood functionsinvolving intractable integrals, rendering

the direct application of Cook’s approach to be very difficult if not impossible, since the measures
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involve first and second derivatives of these functions. In this context, Zhu and Lee (2001) and

Zhu et al. (2001) developed an unified approach for performing local influence and case-deletion

diagnostics, respectively, for general missing data models based on theQ-function, i.e., the con-

ditional expectation of the complete-data log likelihood at the E-step in the EM algorithm. This

was extended to generalized linear and NLME models by Lee andXu (2004) and Xu et al. (2006),

respectively. ThisQ-function approach produces result similar to those obtained using the Cook’s

approach. Recently, Matos et al. (2013a) used thisQ function approach for developing influence

diagnostics for LMEC/NLMEC models. Stemming from the same difficulty with intractable in-

tegrals (for example, the pdfs of truncated multivariate Student-t distributions) in implementing

the Cook’s diagnostics for thet-LMEC/NLMEC model of Matos et al. (2013b), we develop case-

deletion and influence diagnostics measures using the approach of Zhu et al. (2001) (see also Lee

and Xu 2004; Zhu and Lee 2001). The results presented here supplement the robust likelihood-

based inference developed by Matos et al. (2013b) for LMEC/NLMEC models, appropriate for

longitudinal HIV data.

The rest of this paper is organized as follows. Section 2 presents thet-LMEC model speci-

fication, and an EM-type algorithm for ML estimation. Section 3 presents the global and local

influence approaches for thet-LMEC model considering various perturbation schemes for subject-

level and observation-level diagnostics. In Section 4, thedynamict-NLMEC model is defined.

The methodology is illustrated in Section 5 using a motivating HIV dataset. Section 6 presents a

numerical study comparing the performance of our methods with other normality-based methods.

Section 7 concludes, with some possible directions for future research.

2 Censored linear mixed effect model

Ignoring censoring for the moment, thet-LME model of Matos et al. (2013b) is specified as:

yi = Xiβ + Zibi + ǫi, (1)
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where 


bi
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 ind.

∼ tni+q







0

0
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D 0

0 σ2Ini


 , ν


 , i = 1, . . . , n, (2)

which implies that marginally

bi
iid
∼ tq(0,D, ν) and ǫi

ind.
∼ tni

(0, σ2Ini
, ν), i = 1, . . . , n, (3)

wheretp(µ,Σ, ν) denotes the pdf of a multivariate Student-t distribution with location vectorµ,

scale matrixΣ and degrees of freedomν. The subscripti refers to the subject index;Ip denotes the

p×p identity matrix;yi = (yi1, . . . , yini
)⊤ is a vector of observed continuous responses for subject

i of dimensionni×1; Xi is theni×p design matrix associated to theβ (p×1 vector) fixed effects;

Zi is theni × q design matrix corresponding to theq × 1 vector of random effectsbi; ǫi is the

(ni × 1) vector of random errors and the random effects dispersion matrix D = D(α) depends on

unknown parametersα. Following Matos et al. (2013b), we consider the case where the response

Yij is not fully observed for alli, j. Consequently, the observed data for thei-th subject is(Qi,Ci),

whereQi is the vector of censoring level andCi is the vector of censoring indicators such that

yij ≤ Qij if Cij = 1,

yij = Qij if Cij = 0. (4)

For simplicity, we assume that the data are left censored, and extensions to other arbitrary censoring

patterns are immediate.

2.1 The likelihood function

The first step is to treat separately the observed and censored components ofyi. Let yo
i be the

no
i -vector of observed outcomes andyc

i be thenc
i -vector of censored observations for subjecti

with (ni = no
i + nc

i) such thatCij = 0 for all elements inyo
i , and 1 for all elements inyc

i .

After reordering,yi, Qi, Xi, andΣi can be partitioned as:yi = vec(yo
i ,y

c
i ), Qi = vec(Qo

i ,Q
c
i),

X⊤
i = (Xo

i ,X
c
i) andΣi =

(Σoo

i Σ
oc

i

Σ
co

i Σ
cc

i

)
, wherevec(·) denotes the function which stacks vectors or
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matrices of the same number of columns. Using properties of multivariate Student-t distribution,

we have thatyo
i ∼ tno

i
(Xo

iβ,Σ
oo
i , ν), andyc

i |y
o
i ,∼ tnc

i
(µco

i ,S
co
i , ν + no

i ), where

µco
i = Xc

iβ +Σco
i Σ

oo−1
i (yo

i −Xo
iβ), Sco

i =

(
ν +Q(yo

i )

ν + no
i

)
Σcc.o

i , (5)

with Σcc.o
i = Σcc

i − Σco
i Σ

oo−1
i Σoc

i andQ(yo
i ) = (yo

i − Xo
iβ)

⊤Σoo−1
i (yo

i −Xo
iβ). Therefore, the

likelihood for the subjecti is

Li(θ|y) = f(Qi|Ci, θ) = f(yc
i ≤ Qc

i |y
o
i = Qo

i , θ)f(y
o
i = Qo

i |θ),

= Tnc
i
(Qc

i |µ
co
i ,S

co
i , ν + no

i )tno
i
(Qo

i |X
o
iβ,Σ

oo
i , ν) = Li,

whereTp(·|µ,Σ, ν) denoted the cdf of the multivariate Student-t distribution with parametersµ,

Σ andν. The log-likelihood function for the observed data is givenby ℓ(θ|y) =
∑n

i=1 logLi,

and the estimates obtained by maximizing the log-likelihood functionℓ(θ|y) are the maximum

likelihood estimates (MLEs).

2.2 The EM algorithm

The observed log-likelihood function involves complex expressions, making it very difficult to

work directly with ℓ(θ|y), either for the ML estimation, or the corresponding influence anal-

ysis. As mentioned above, Matos et al. (2013b) developed an EM-type algorithm for thet-

LMEC/NLMEC models by treatingy = (y⊤
1 , . . . ,y

⊤
n )

⊤,b = (b⊤
1 , . . . ,b

⊤
n )

⊤, andu = (u1, . . . , un)
⊤

as hypothetical missing data, and augmenting those to the observed data vector(Q,C), where

Q = vec(Q1, . . . ,Qn), andC = vec(C1, . . . ,Cn). Thus, the resulting complete data isyc =

(C⊤,Q⊤,y⊤,b⊤,u⊤)⊤, and the EM-type algorithm is applied to the complete data log-likelihood

functionℓc(θ|yc) =
∑n

i=1 ℓi(θ|yc), where

ℓi(θ|yc) = −
1

2

[
ni log σ

2 +
ui

σ2
(yi −Xiβ − Zibi)

⊤(yi −Xiβ − Zibi)

+ log |D|+ uib
⊤
i D

−1bi

]
+ h(ui|ν) + C,
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where,C is a constant that does not depend on the vector parameterθ andh(ui|ν) is the pdf of

a Gamma(ν/2, ν/2) distribution. Given a current valuêθ
(k)

of θ, theQ function (the conditional

expectation of the complete data log-likelihood function)is given by

Q(θ|θ̂
(k)
) =

n∑

i=1

Qi(θ|θ̂
(k)
) =

n∑

i=1

Q1i(β, σ
2|θ̂

(k)
) +

n∑

i=1

Q2i(α|θ̂
(k)
), (6)

where

Q1i(β, σ
2|θ̂

(k)
) = −

ni

2
log σ2−

1

2σ2

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i − Ziûb

(k)

i ) +û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)
]

andQ2i(α|θ̂
(k)
) = −1

2
log |D| − 1

2
tr

(
ûb2

i

(k)
D−1

)
.

Here, â(k)i = tr
(
ûy2

i

(k)
− 2ûybi

(k)
Z⊤

i + ûb2
i

(k)
Z⊤

i Zi

)
; ûy2

i = E{uiyiy
⊤
i |Qi,Ci, θ̂}; ûb2

i

(k)
=

E{uibib
⊤
i |Qi,Ci, θ̂

(k)
} = σ̂2

(k)
Λ̂

(k)

i +ϕ̂
(k)
i (ûy2

i

(k)
−ûy

(k)
i β̂

(k)⊤
X⊤

i −Xiβ̂
(k)
ûy

(k)⊤
i +û

(k)
i Xiβ̂

(k)
β̂

(k)⊤
X⊤

i )ϕ̂
⊤
i ;

ûb
(k)

i = E{uibi|Qi,Ci, θ̂
(k)
} = ϕ̂

(k)
i (ûy

(k)
i − û

(k)
i Xiβ̂

(k)
); ûybi

(k)
= E{uiyib

⊤
i |Qi,Ci, θ̂

(k)
} =

(ûy2
i

(k)
− ûy

(k)
i β̂

(k)⊤
X⊤

i )ϕ̂
⊤
i , with Λ̂

(k)

i = (σ̂2
(k)
D̂−1(k) + Z⊤

i Zi)
−1 andϕ̂(k)

i = Λ̂
(k)

i Z⊤
i .

It is easy to observe that the E-step reduces to the computation of ûy2
i = E{uiyiy

⊤
i |Qi,Ci, θ̂},

ûyi = E{uiyi|Qi,Ci, θ̂}, and ûi = E{ui|Qi,Ci, θ̂}. These expected values are available in

closed form using Propositions available in Matos et al. (2013b).

Next, the conditional maximization step (CM-step) maximizesQ(θ|θ̂
(k)
) conditionally with re-

spect toθ to obtain new estimateŝθ
(k+1)

as follows:

β̂
(k+1)

=

(
n∑

i=1

û
(k)
i X⊤

i Xi

)−1 n∑

i=1

X⊤
i

(
ûy

(k)
i − Ziûb

(k)

i

)
, (7)

σ̂2
(k+1)

=
1

N

n∑

i=1

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i − Ziûb

(k)

i ) + û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)
]
, (8)

D̂(k+1) =
1

n

n∑

i=1

ûb2
i

(k)
, (9)

whereN =
∑n

i=1 ni, and the scale matrixD unstructured withα being the upper triangular

elements ofD. The algorithm is iterated until the distance involving twosuccessive evaluations

of the log-likelihood,|ℓ(θ̂
(k+1)

)/ℓ(θ̂
(k)
) − 1|, is sufficiently small. Here, we do not focus on the
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ML estimation, and the interested might refer to Matos et al.(2013b) for further details. In the

following section, we derive influence diagnostic measures, given the ML estimatêθ.

3 Influence analysis

Influence diagnostic techniques are used in statistical modeling to identify aberrant observations,

and assess their impact on model fitting and parameter estimation. Primarily, there are two possible

approaches for detecting these influential observations. The most popular one is the case-deletion

technique proposed by Cook (1977), where the idea is to analyze a fitted model after deleting

cases one at a time, or in small groups, and then to study theirimpact on the obtained estimates

by using some metric, such as the Cook’s or likelihood distance. The other approach is the local

influence analysis (Cook 1986), where a minor perturbation of the underlying statistical model

is considered, and the stability of the estimation output isassessed. Motivated by the approach

of Zhu et al. (2001) that utilizes theQ-function, we develop case-deletion measures, followed by

influence measures for thet-LMEC model.

3.1 Case-deletion measures

The case-deletion approach is a commonly used scheme to study the effects of deleting theith

case/observation from the data set. In the rest of the paper,the subscript ‘[i]’ will denote the original

data set with theith case deleted. Consequently, the log-likelihood function corresponding to the

remaining data is denoted byℓ(θ|Yc[i]). In order to assess the influence of theith case on the ML

estimatêθ, we need to compare the difference betweenθ̂[i] andθ̂, whereθ̂[i] = (β̂
⊤

[i], σ̂
2
[i], α̂

⊤
[i])

⊤ is

the maximizer of the functionQ[i](θ|θ̂) = E{ℓ(θ|Yc[i])|Q,C, θ̂}, with θ̂ being the ML estimate

of θ. An observation is regarded as influential if its deletion generates considerable influence

on model estimates. In other words, ifθ̂[i] is fairly far from θ̂, then theith observation could

considered as influential. Note that, since the estimatorθ̂[i] is needed for every case, this scheme

requires a considerable computational effort, particularly for large sample sizes. For that reason, a

one-step pseudo approximation (see Cook and Weisberg 1982;Zhu et al. 2001) is used to reduce
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the burden. This approximation follows:

θ̂
1

[i] = θ̂ + {−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂|θ̂), (10)

whereQ̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ⊤

∣∣
θ=

̂θ
represents the Hessian matrix, andQ̇[i](θ̂|θ̂) =

∂Q[i](θ|θ̂)

∂θ

∣∣
θ=

̂θ
,

i = 1, . . . , n, with its elements are given by

Q̇
[i]β(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂β =

1

σ̂2
E1[i], (11)

Q̇[i]σ2(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂σ
2 = −

1

2σ̂2
E2[i], (12)

Q̇[i]α(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂α, (13)

whereE1[i] =
∑

j 6=iX
⊤
j (ûyj −Zj ûbj − ûjXjβ̂) andE2[i] =

∑
j 6=i(nj −

Aj

σ̂2
), with Aj = tr(ûy2

j −

2ûybjZ
⊤
j +ûb2

jZ
⊤
j Zj)−2β̂

⊤
X⊤

j (ûyj−Ziûbj)+ûjβ̂
⊤
X⊤

j Xjβ̂. Finally the elements oḟQ[i]α(θ̂|θ̂)

are of the form

Q̇[i]αr
(θ̂|θ̂) = −

1

2

∑

j 6=i

tr[D−1Ḋ(r)−D−1Ḋ(r)D−1ûb2
j ].

It is necessary to compute the Hessian matrixQ̈(θ|θ̂) =
∑n

i=1 ∂
2Qi(θ|θ̂)/∂θ∂θ

⊤, θ = (β⊤, σ2,α⊤)⊤:

the parameter vector to develop case-deletion, local influence and any particular perturbation

schemes, following Zhu and Lee (2001). The Hessian matrix∂2Qi(θ|θ̂)/∂θ∂θ
⊤ has the following

elements:

∂2Qi(θ|θ̂)

∂β∂β⊤
= −

1

σ2
X⊤

i ûiXi,
∂2Qi(θ|θ̂)

∂β∂σ2
= −

1

σ4
X⊤

i (ûyi − Zj ûbi − ûiXiβ),

∂2Qi(θ|θ̂)

∂β∂αr

= 0,
∂2Qi(θ|θ̂)

∂σ2∂σ2
=

1

2σ4
[ni −

2

σ2
Ai],

∂2Qi(θ|θ̂)

∂σ2∂αr

= 0,
∂2Qi(θ|θ̂)

∂αs∂αr

=
1

2
tr(A(sr))−

1

2
tr(B(sr)ûb2

i ),

whereA(sr) = D−1[Ḋ(s)D−1Ḋ(r)−D̈(s, r)] andB(sr) = D−1[Ḋ(s)D−1Ḋ(r)+Ḋ(r)D−1Ḋ(s)−

D̈(s, r)]D−1, with Ḋ(r) = ∂D/∂αr, D̈(s, r) = ∂2D/∂αs∂αr, r, s = 1, . . . , p∗, p∗ = dim(α)

and i = 1, . . . , n. After some rearrangement and evaluating these derivatives at θ = θ̂, we

obtain the Hessian matriẍQ(θ̂|θ̂) (see Appendix A) as block-diagonal of the form̈Q(θ|θ̂) =
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diag(Q̈β(θ̂|θ̂), Q̈σ2(θ̂|θ̂), Q̈α(θ̂|θ̂)) (as in the normal case, see Matos et al. 2013a), whereQ̈β(θ̂|θ̂) =

− 1

σ̂2

∑n

i=1X
⊤
i ûiXi, Q̈σ2(θ̂|θ̂) = b/2(σ̂2)2 andQ̈α(θ̂|θ̂) =

n∑

i=1

∂2Qi(θ̂|θ̂)/∂αs∂αr, with X =

(X⊤
1 , . . . ,X

⊤
n )

⊤ andb =
∑n

i=1(ni − 2Ai/σ̂2). Using (10), the next result proposes the one-step

pseudo approximation of̂θ[i] = (θ̂
⊤

[i], σ̂
2
[i], α̂

⊤
[i])

⊤, i = 1, . . . , n. Its proof is straightforward and is

therefore omitted.

Proposition 1. The one-step pseudo approximation for the parameter estimates of thet-LMEC

model with theith case deleted is given by

β̂
1

[i] = β̂ − (

n∑

i=1

X⊤
i ûiXi)

−1E1[i]

σ̂2
1

[i] = σ̂2

(
1 +

E2[i]

b

)

α̂
1 = α̂+ {−Q̈α(θ̂|θ̂)}−1Q̇[i]α(θ̂|θ̂)

whereE1[i],E2[i] andQ̇[i]α(θ̂|θ̂) are as in (11), (12) and (13) respectively,b =
∑n

i=1(ni−2Ai/σ̂2)

andQ̈[i](θ̂|θ̂) =
n∑

i=1

∂2Qi(θ̂|θ̂)/∂αs∂αr.

Note that Proposition 1 allows us to assess influence via the case-deletion approach for the

t-LMEC model straightforwardly through computing the ML estimateθ̂ for the complete data, the

ML estimateθ̂[i] with theith case deleted, and comparing both estimates using some metric, such

as the Cook’s or likelihood distance. If the difference between them is fairly large, then theith

case is regarded as influential. The generalized Cook distance (Zhu and Lee 2001) is defined as

GDi(θ) = (θ̂[i] − θ̂)⊤{−Q̈(θ̂|θ̂)}(θ̂[i] − θ̂), i = 1, . . . , n, (14)

Substituting (10) into (14), we have the approximation

GD1
i (θ) = Q̇[i](θ̂)

⊤{−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂), i = 1, . . . , n.

SinceQ̈(θ̂|θ̂) is a diagonal matrix, this approximation can be written asGD1
i (θ) =

p∑

k=1

GD1
i (θk),

whereθ = (θ1, . . . , θp)
⊤ (for details see Xie et al. 2007). Consequently, for ourt-LMEC model
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we have

GD1
i (θ) = GD1

i (β) +GD1
i (σ

2) +GD1
i (α). (15)

3.2 Local Influence

In this section, we consider local influence analysis (Cook 1986) focusing on the following per-

turbation schemes: the case-weight, scale matrix and response perturbation. Here, we consider

both subject-level and observation-level diagnostics. The subject-level diagnostics identify if a

subject is considered influential or not, and is carried out considering a perturbation function for

the ith subject. However, in modeling longitudinal data, we havetwo level of responses, namely,

the subject-level and observation level, and intuitively,an influential subject may/may not contain

influential observations (Pan et al. 2013). Hence, exploring atypical observations at both levels are

warranted. The observation-level diagnostics consider a perturbation in thejth observation of the

ith subject.

The theoretical developments in this section proceed in theframework of Cook (1986) and Zhu

and Lee (2001). Letω = (ω1, . . . , ωg)
⊤ be a perturbation vector varying in an open regionΩ ⊂ Rg

andℓc(θ,ω|yc), the complete-data log-likelihood respect to the perturbed model induced byω.

We assume there existsω0 ∈ Ω, such thatℓc(θ,ω0|yc) = ℓc(θ|yc) for all θ. TheQ-displacement

functionfQ(ω) is defined as follows

fQ(ω) = 2
[
Q
(
θ̂|θ̂
)
−Q

(
θ̂(ω)|θ̂

)]
,

whereθ̂(ω) is the maximum of the functionQ(θ,ω|θ̂) = E[ℓc(θ,ω|yc)|Q,C, θ̂], which can be

written as
∑n

i=1 ωiQi(θ|θ̂). The local behavior of theQ-displacement function can be analyzed

by using the normal curvatureCfQ,d of α(ω) = (ω⊤, fQ(ω))⊤ atω0 in the direction of some unit

vectord. It follows that

CfQ,d = −2d⊤Q̈ωo
d and − Q̈ω0

= ∆⊤
ω0

{
−Q̈(θ̂|θ̂)

}−1

∆ω0
,

whereQ̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ⊤
|
θ=

̂θ
and∆ω =

∂2Q(θ,ω|θ̂)

∂θ∂ω⊤
|
θ=

̂θ(ω)
. For ourt-LMEC model, we

11



consider∆ω0
= (∆⊤

β ,∆
⊤
σ2 ,∆⊤

α )
⊤, where∆β =

∂2Q(θ,ω|θ̂)

∂β∂ω⊤
|ωo

, ∆σ2 =
∂2Q(θ,ω|θ̂)

∂σ2∂ω⊤
|ωo

and

∆α = (∆⊤
α1, . . . ,∆

⊤
αp∗)

⊤, with ∆αr =
∂2Q(θ,ω|θ̂)

∂αr∂ω⊤
|ωo

, r = 1, . . . , p∗.

3.2.1 Subject-level diagnostics

Case weight perturbation

We consider an arbitrary attribution of weights for the expected value of the complete-data log-

likelihood function (perturbedQ–function), which may capture departures in general directions,

by writing

Q(θ,ω|θ̂) = E[ℓc(θ,ω|yc)|Q,C, θ̂] =
n∑

i=1

ωiE[ℓi(θ|yc)|Q,C, θ̂] =
n∑

i=1

ωiQi(θ|θ̂).

Here,ω = (ω1, . . . , ωn)
⊤ is ann×1 vector andωo = (1, . . . , 1)⊤. It can be shown that the local in-

fluence analysis for this perturbation scheme is equivalentto the case-deletion approach discussed

in Section 3.1. Consequently, we have∆β = 1
σ2X

⊤D(ǫ1, . . . , ǫn), ∆σ2 = − 1
2σ2 n⊤ + 1

2σ4 m⊤,

∆αr
= [∂Q1(θ|

̂θ)
∂αr

, . . . , ∂Qn(θ|
̂θ)

∂αr
] for r = 1, . . . , p∗, wheren = (n1, . . . , nn)

⊤, m = (A1, . . . , An)
⊤,

D(ǫ1, . . . , ǫn) is a block-diagonal matrix, withǫi = ûyi − Ziûbi − ûiXiβ̂ and
∂Qi(θ|θ̂)

∂αr

=

−
1

2
tr[D−1Ḋ(r)−D−1Ḋ(r)D−1ûb2

i ].

Scale matrix perturbation

In order to study the effects of perturbation on the scale matrix Σi = σ2Ini
+ ZDZ⊤

i , we con-

siderD(ωi) = ω−1
i D, orσ2(ωi) = ω−1

i σ2, for i = 1, . . . , n. The non-perturbed model arises when

ωo = (1, . . . , 1)⊤. The perturbedQ-function follows (6), withD(ωi) andσ2(ωi) in place ofD and

σ2, respectively. Considering a perturbation onD (matrix of random effects), we have∆β = 0,

∆σ2 = 0 and∆αr
= 1

2
[g1, . . . , gn], wheregi = tr(D−1Ḋ(r)D−1ûb2

i ), r = 1, . . . , p∗. Perturbation

onσ2 (the random error variance) yields∆β = 1
σ2X

⊤D(ǫ1, . . . , ǫn),∆σ2 =
1

2σ4
m⊤ and∆α = 0.

Response perturbation

A general way for perturbing the response variablesQij , i = 1, . . . , n, j = 1, . . . , ni, is

12



introduced by consideringQij(ω) = Qij + ωisij, wheresij is a known constant. Hence, for the

t-LMEC model, the perturbed response is obtained asyij(ω) ≤ Qij if Cij = 1, andyij(ω) = Qij

if Cij = 0, whereyij(ω) = yij − ωisij . Again, the perturbedQ-function follows (6), withûyi,

ûy2
i andûybi replaced byûyiω = ûyi − ωisiûi, ûy2

iω = ûy2
i − ωi(ûyis

⊤
i + siûy⊤

i ) + ω2
i sis

⊤
i and

ûybiω = ûybi−ωisiûb⊤
i , respectively, wheresi = (si1, . . . , sini

)⊤. The vectorω0 = 0 represents

no perturbation. Finally, we have∆β = − 1
σ2 [X

⊤
1 û1s1, . . . ,X

⊤
n ûnsn],∆σ2 = − 1

σ4 [(ûy1−Z1ûb1−

û1X1β)
⊤s1, . . . , (ûyn − Znûbn − ûnXnβ)

⊤sn], and∆α = 0.

3.2.2 Observation-level diagnostics

We proceed as above considering a perturbation vectorω = (ω1, . . . ,ωg)
⊤,whereωi = (ωi1, . . . , ωini

)⊤,

and noting that all the previous results for the subject-level diagnostics hold for the observation-

level cases as well. Also, we denoteui = (ui1, . . . , uini
)⊤, vi = (vi1, . . . , vini

)⊤ and gi =

(gi1, . . . , gini
)⊤.

Case weight perturbation

In this case, we have∆β = 1
σ2 [u1, . . . ,un], with uij = X⊤

ij (ûyij − Zij ûbi − ûiXijβ̂);

∆σ2 = − 1
2σ2 [v1, . . . ,vn] with vij = 1 − 1

σ2Aij andAij = tr(ûy2
ij − 2ûybijZ

⊤
ij + ûb2

iZ
⊤
ijZij) −

2β̂
⊤
X⊤

ij(ûyij−Zij ûbi)+ûiβ̂
⊤
X⊤

ijXijβ̂ and∆αr
= −1

2
[g1, . . . , gn],with gij = tr(D−1Ḋ(r)D−1(D−

ûb2
i )), r = 1, . . . , p∗.

Scale matrix perturbation

Similar to the subject-level, we consider perturbations onD andσ2. Consequently, forD we

have that∆β = 0, ∆σ2 = 0 and∆αr
= 1

2
[g1, . . . , gn], with gij = tr(D−1Ḋ(r)D−1ûb2

i ),

r = 1, . . . , p∗. In addition, a perturbation onσ2 generates∆β = 1
σ2 [u1, . . . ,un], with uij =

X⊤
ij (ûyij − Zij ûbi − ûiXijβ̂); ∆σ2 = [v1, . . . ,vn], with vij = 1

2σ4Aij andAij = tr(ûy2
ij −

2ûiXijβ̂ + ûb2
iZ

⊤
ijZij)− 2β̂

⊤
X⊤

ij(ûyij − Zij ûbi) + ûiβ̂
⊤
X⊤

ijXijβ̂ and∆α = 0.

Response perturbation

Finally, for the response perturbation case, we have∆β = − 1
σ2 [u1, . . . ,un], with uij = X⊤

ij ;

13



∆σ2 = − 1
σ4 [v1, . . . ,vn], with vij = (ûyij − Zij ûbi − ûiXijβ̂) and∆αr

= 0.

As the reader can note, it is impossible to give details for all perturbation schemes that would

be of interest. However, if we can find an appropriateω such that the perturbed complete data log-

likelihood functionℓc(θ,ω|yc) is smooth enough and the pertinent derivatives in the diagnostic

measures are well-defined, we can conduct the local influenceanalysis without much difficulty.

In order to quantify the influence of a case in the data, we follow the method based on the

functionM(0)l =
∑r

k=1 ζ̃kε
2
kl, where ζ̃k = ζk/(ζ1 + . . . + ζr) andε2k = (ε2k1, . . . , ε

2
kg)

⊤ with

{(ζk, εk), k = 1, . . . , g} are eigenvalue–eigenvector pairs of−2Q̈ω0
with ζ1 ≥ . . . ≥ ζr > ζr+1 =

. . . = 0 and orthonormal eigenvectors{εk, k = 1, . . . , g} (for details see Matos et al. 2013a). The

lth case may be regarded as influential ifM(0)l is larger than the benchmark (cut-off). Following

Lee and Xu (2004), we consider our benchmark asM(0) + 3.5SM(0), whereM(0) andSM(0)

are the mean and standard error of{M(0)l : l = 1, . . . , g} respectively.

4 Censored nonlinear mixed effect model

In this section, we propose the censored nonlinear mixed effect model under Student-t distribution

(t-NLMEC). Similar to thet-LMEC model, we denote the number of subjects byn, and the number

of measurements on theith subject byni. Ignoring censoring for the moment, let us considerxij

the vector incorporating explanatory variables (covariates), the longitudinal time componenttij ,

βij = (β1ij , . . . , βsij)
⊤ andβ = (β1, . . . , βp)

⊤(p > s). The Student-t nonlinear mixed effect

model (t-NLME model), can be written as:

yi = ηi(tij ,βij) + ǫi, βij = d(xij,β,bi), (16)

where yi = (yi1, ..., yini
)⊤, with yij the response for subjecti at time tij , ηi(tij ,βij) =

(η(ti1,βi1)
⊤, . . . , η(tini

,βini
))⊤, with η(·) being a nonlinear (known) but differentiable function of

vector-valued mixed-effects parametersβij , ǫ = (ǫi1, ..., ǫini
)⊤ is the random error vector,d(.) is

ans-dimensional linear function, andbi = (b1i, . . . , bqi)
⊤ is the vector of random effects(q ≤ s).
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The joint distribution of(bi, ǫi) follows (2). From Matos et al. (2013b), the marginal distribution

is given by

f(y|θ) =

n∏

i=1

∫ ∞

0

∫

Rq

φni
(yi, ηi(tij , d(xij,β,bi)), u

−1
i σ2Ini

)φq(bi; 0, u
−1
i D)

×G(ui|ν/2, ν/2)dbidui,

whereG(·|a, b) denotes the density of a Gamma(a, b) distribution with meana/b. The marginal

distributionf(y|θ) does not have a closed form because the model function is not linear in the

random effects. However, in order to use all the theory on influence diagnostics developed above

for the LMEC model, we use the following result proposed by Matos et al. (2013b) which linearizes

thet-NLMEC likelihood in terms ofbi andβ.

Proposition 2. Let b̃i and β̃ be expansion points in a neighborhood ofbi andβ, respectively.

Then, thet-NLME model as defined in (2) and (16) has the followingt-LME form

ỹi = W̃iβ + H̃ibi + ǫi, i = 1, . . . , n, (17)

whereỹi = yi−η̃i(β̃, b̃i), bi
ind
∼ tq(0,D, ν), ǫi

ind.
∼ tni

(0, σ2Ini
, ν), H̃i =

∂ηi(tij, d(xij , β̃,bi))

∂b⊤
i

|
bi=b̃i

,

W̃i =
∂ηi(tij , d(xij,β, b̃i))

∂β⊤
i

|
β

i
=

˜β
i

and η̃(β̃, b̃i) = ηi(tij , d(xij, β̃, b̃i))− H̃ib̃i − W̃iβ̃.

Proof: See Matos et al. (2013b).

For the censored case, this model (17) is at-LMEC model with the same structure as (1)-(4). The

model matrices in (17) depend on the current parameter value, and need to be recalculated at each

iteration. The algorithm iterates between the L-, E- and CM-steps until convergence. Moreover,

the influence diagnostics fort-LMEC discussed earlier in Section 3 can be incorporated along with

the approximation in (17) to obtain approximate influence diagnostics fort-NLMEC. In the next

section, we apply these diagnostic methods to the motivating longitudinal HIV data in context of a

t-NLMEC model.
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5 Application to HIV Data

5.1 ACTG 315 Dataset

In this section, we reanalyze the HIV viral load data from theACTG 315 clinical trial (Wu 2002),

using thet-NLMEC model. In this study, 46 HIV-1 infected patients weretreated with a potent

ARV therapy. Viral load was recorded on days 0, 2, 7, 10, 14, 21, 28 and weeks 8, 12, 24 and 48

after initiation of treatment, with a total of 361 observations. Measurements below the detectable

threshold of 100 copies/mL (40 out of 361,11%) were considered left-censored, and the censoring

process assumed independent of complete data.

0 50 100 150

1
2

3
4

5
6

days

log
 10

 R
NA

0 50 100 150

0
10

0
20

0
30

0
40

0
50

0

days

CD
4 c

ell
 co

un
t

Figure 1: Profiles of viral load in natural log10 scale (Panel a) and CD4 cell count (Panel b) for
four randomly selected subjects from the dataset. The horizontal line is below the detectable level
of viral load (2 = log10(100)).

Figure 1 plots the viral load (in natural log10 scale) and CD4 longitudinal profiles for four

randomly selected patients in the left and right panels, respectively. Clearly, both the viral load

and CD4 cell count trajectories exhibit distinct patterns,with the rate change in viral load varying

substantially across subjects, possibly reflecting both biological and systematic associations with

the subject-level covariate CD4. The viral load trajectories initially exhibit a rapid decay (called
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first-phase decay), and after that some have a slower decay (the second-phase), or rebounds back

to the original levels (Liu and Wu 2012). In the spirit of Wu (2002) who suggested that a bi-phasic

phenomenon might be associated with CD4 counts, we considerthe following NLME model:

yij = log10(P1ie
−λ1ij tij + P2ie

−λ2ij tij ) + ǫij ,

β1ij = log(P1i) = β1 + b1i, β2ij = λ1ij = β2 + b2i,

β3ij = log(P2i) = β3 + b3i, β4ij = λ2ij = β4 + β5CD4ij + b4i (18)

whereyij is the log10-transformation of the viral loadV (tij) (log-transformation done to stabilize

variance) for subjectith at timetij (i = 1, 2, . . . , n, j = 1, 2, . . . , ni), P1i andP2i are the base-

line viral loads,λ1ij andλ2ij are the first- and second-phases of viral decay rates representing the

minimum turnover rate of productively infected cells and latently long-lived infected cells, respec-

tively, ǫi = (ǫi1, . . . , ǫini
)⊤ are within-subject random errors;βij = (β1ij, β2ij , β3ij , β4ij)

⊤ and

β = (β1, β2, β3, β4, β5)
⊤ are the subject-level (ith subject at timetij), and population-level param-

eters, respectively,CD4ij indicates the observed CD4 counts at timetij andbi = (b1i, . . . , b4i)
⊤

are the subject-level random effects. Note that (18) is derived from the bi-phasic exponential de-

cay modelV (t) = P1e
−λ1t + P2e

−λ2t of Wu and Ding (1999). Figure 2 (Panel a) presents raw
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Figure 2: Plots of raw density histogram of viral load (Panela), density histogram of CD4 cell
count (Panel b), and Q-Q plot of CD4 cell count (Panel c) from the HIV dataset. The vertical line
in (a) is below the detectable level of viral load(2 = log10(100)).
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histogram of the viral load measures, where the viral loads below the threshold are substituted by

half the limit, while Figure 2(Panels b and c) display the histogram and the Q-Q plot of the CD4

cell count, respectively. These plots reveal that both viral loads and CD4 counts exhibit heavy-

tail behavior, and presence of possible outliers. Hence, toaccommodate these features, we fit the

t-NLMEC model defined in (16) considering the structure givenin (18).

5.2 Model fitting and Diagnostic analysis

The model fitting uses the approximated ML method given in Proposition 2, and the ECM algorith-

m presented in Section 2.2. To avoid very small/large estimates which might render the estimation

method unstable, we standardize the baseline CD4 values, and re-scale the original timet in days

between 0 and 1. The degrees of freedomν is assumed to be known, and using the AIC criterion,

ν = 8 which maximizes the profile log-likelihood (See, Figure 3, Panel a). This reveals that a fit

using a normality-based LMEC might be inadequate. Further model comparison measures via. the

AIC/BIC criteria that compares the normal andt-NLMEC models are presented in Table 1, which

show that thet-NLMEC model provided a much improved model fit than the normal one.

Table 1: ML estimates and model comparison criteria for normal andt-NLMEC models. SE are
the estimated asymptotic standard errors.

N-NLMEC t-NLMEC
Parameter MLE SE MLE SE

β1 11.6565 0.1810 11.6457 0.1888
β2 1.7584 1.6433 31.7590 1.9054
β3 6.6407 0.3243 6.7695 0.3545
β4 -0.5095 0.9345 -0.1232 0.8980
β5 0.3972 0.2547 0.3805 0.2378
σ2 0.1253 0.1050
ν 8

log-like -281.8423 -258.3164
AIC 595.6847 548.6329
BIC 657.9067 610.8549

Because we currently focus on exploring influence diagnostics, the details on the estimation and

interpretation of the parameter estimates ofβ are omitted for brevity. Figure 3 (Panel b) displays

how thet-NLMEC model insulates the overall parameter estimates, and provides a robust estima-

tion scheme by controlling the influence of these influential/outlying observations (numbered in

the figure), and attributing smaller weightsûi to these observations.
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Figure 3: Plot of the profile log-likelihood versus the degrees of freedomν (Panel a), and estimated
weightûi for thet-NLMEC fit (Panel b), with the influential observations numbered.

In order to identify outlying observations, we compute the Mahalanobis distanced2i (θ̂), i =

1, . . . , 46. Figure 4 (Panels a and b) display the index plot ofd2i (θ̂) for the normal andt-NLMEC

models, respectively, which reveals that subjects#17, #40, #42 and#46 appear to be possible

outliers . Moreover, these subjects have large values ofd2
ei

in both normal andt-LMEC models,

suggesting that they aree-outliers (see Figures 5, Panels a and b). From Figure 5, Panels (c and d),

subject#2 with the highestd2
bi

can be considered asb-outlier for both models.

5.2.1 Global influence

In order to evaluate the effect on the ML estimates when some observation is deleted, we ana-

lyze theGD1
i (θ) plot in Figure 6 (Panel a). The plot reveals that three cases(#7,#24,#40)

are potentially influential on the parameter estimates. Figures 6 (Panels b-d) present plots of

GD1
i (β), GD1

i (σ
2) andGD1

i (α) respectively, using Proposition 1. From these figures, we infer

that subjects#17,#42 are influential forβ,#17,#40,#42 are influential forσ2, and observations

#7,#24,#40 are influential forα.
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Figure 4: Mahalanobis distance fort-NLMEC (Panel a), Mahalanobis distance for normal NLMEC
(Panel b). The influential observations are numbered.

5.2.2 Local influence

Next, we focus on the local influence analysis for the ACTG 315data, based onM(0), with inter-

est focussing onθ. We study both the subject-level and observation-level diagnostics. For both of

these, we use the criterionM(0)i > M(0) + 3.5SM(0), i = 1, . . . , 46, to discriminate whether an

observation is influential or not.

Subject-level diagnostics

Figure 7 presents the index plots ofM(0) under the perturbation schemes discussed in Section

3.2.1. We find that only subject#3 appears influential under response variable perturbation,and

no other subjects are influential under the other perturbation schemes. Interestingly, this subject

does not have censored responses over time.

Observation-level diagnostics

Using the perturbation schemes provided in Section 3.2.2, Figure 8 presents the observation-level

diagnostics for the dataset. Note that, in the case weight and σ2 perturbation schemes, the ob-
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Figure 5: e-outliers detection fort-NLMEC model (Panel a),e-outliers detection for normal
NLMEC model (Panel b),b-outliers detection fort-NLMEC model (Panel c), andb-outliers de-
tection for normal NLMEC model (Panel d). The influential observations are numbered.
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Figure 6: Global influence. Approximate generalized Cook’sdistanceGD1
i (θ) (Panel a),GD1

i for
subsetβ (Panel b),GD1

i for subsetσ2 (Panel c), andGD1
i for subsetα (Panel d). The influential

observations are numbered.

servations#53 (subject#7), #76 (subject#10) and#257 (subject#33) could be considered as

influential. In the case of the perturbation on the response variable, we find that observations#23

(subject#2),#61 (subject#8),#163 (subject#21),#265 (subject#34) and#348 (subject#44)

appear as influential. For perturbation onD, we do not find influential observations. Interestingly,

all these detected observations correspond to the last observed time of the respective subjects.
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Figure 7: Index plot ofM(0) for assessing local influence onθ under case weight perturbation (Panel a),
perturbation onD (Panel b), perturbation onσ2 (Panel c), and perturbation on the response variable (Panel
d). The influential observations are numbered.

6 Simulation studies

To examine the performance of the proposed diagnostic measures for finite samples, we conduct a

simulation study focussing on subject-level diagnostics.We consider the non-linear mixed-effects
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Figure 8: Index plot ofM(0) for assessing local influence onθ under case weight perturbation (Panel a),
perturbation onD (Panel b), perturbation onσ2 (Panel c), and perturbation on the response variable (Panel
d). The influential observations are numbered.

model given by

yij =
β1 + bi1

1 + exp(−[tij − (β2 + bi2)]/β3)
+ ǫij , i = 1, . . . , 15, j = 1, . . . , 10,

wheretij = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all i. The random effectsbi =

(bi1, bi2)
⊤, and the error termǫi = (ǫi1, . . . , ǫi10)

⊤ are non-correlated with
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 ind.

∼ t12







0

0
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D 0

0 σ2I10
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 , i = 1, . . . , 15.

We set the fixed-effectsβ⊤ = (β1, β2, β3) = (200, 700, 350), the between-subject covariance

matrix D =




4 −2

−2 25


 , and the within-subject varianceσ2 = 25. Under this model we

consider the following perturbation schemes:

(a) Replace the fixed effectsβ by 2β to generate the responses of the 1st subjecty1,

(b) Replaceβ by 3β and,

(c) Replaceβ by 4β.

Table 2: Simulated data. The values in the table denotes the% of correctly identifying the influ-
ential observations using case-deletion, case weight and matrix D perturbation schemes from 500
simulated datasets under at-NLMEC model.

% of censoring

Case-deletion measure (GDi) 0% 5% 10% 20% 30%

Pert.2β 66.8 66.8 74.8 75.8 81.8
Pert.3β 83.0 83.4 85.8 91.6 94.8
Pert.4β 93.0 93.2 94.2 97.4 98.4

Case-weight perturbation 0% 5% 10% 20% 30%

Pert.2β 66.8 66.8 74.8 75.8 81.8
Pert.3β 83.0 83.4 85.8 91.6 94.8
Pert.4β 93.0 93.2 94.2 97.4 98.4

Perturbation onσ2 0% 5% 10% 20% 30%

Pert.2β 13.0 14.4 18.8 19.2 15.2
Pert.3β 3.60 3.60 4.60 6.00 6.00
Pert.4β 0.40 0.60 0.80 1.00 0.60

Perturbation onD 0% 5% 10% 20% 30%

Pert.2β 83.8 83.6 83.2 83.0 84.8
Pert.3β 95.0 94.6 94.0 94.8 97.4
Pert.4β 97.2 97.8 97.6 98.8 99.0

The diagnostic measures were computed for 500 simulated data sets under various settings of

censoring proportions, say 0%, 5%, 10%, 20% and 30%. Table 2 reports (in percentage) the
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number of times the measures correctly identifiesy1 as the most influential.

To summarize, when the perturbation is high (viz.,3β or 4β), the percentage of correctly de-

tecting atypical observations increases on the overall. This is because the Student-t distribution

is a relatively heavy-tailed (as compared to the normal), and hence can accommodate small per-

turbations (for example2β) in the data, and has lesser ability to detect influential observations

as compared to the normal for smaller perturbations. Interestingly, the % of correct detection in-

creases with the % increase in censored proportions as well,providing more reliability on these

measures. Also, the perturbation on theσ2 do not appear appealing, with a low percentage of

correct detection; however the perturbation onD leads to a substantial increases in detection. A

possible explanation for this fact is that a perturbation onthe fixed-effects of one subject contributes

to increasing the between-subject variance, but the within-subject variance remains constant.

7 Conclusions

This article proposes influence diagnostic tools for detecting outliers and/or influential observations

in the context of linear and non-linear mixed-effects censored model, where the joint distribution of

the random error and random effects follows the Student-t distribution. It supplements the recently

published work of Matos et al. (2013b) which considers estimation and inference of those cen-

sored models using an EM-type algorithm, and also presents amore robust influence diagnostics

framework as compared to the normality-based derivations by Matos et al. (2013a). Our proposed

method relies on theQ function, the conditional expectation of the logarithm of the complete-data

likelihood, which facilitates the theoretical development of the ECM algorithm in the context of

mixed-effects models. The non-linear mixed-effects modelformulation is mathematically (and

computationally) feasible through a linearization. A simulation study compares the outlier detec-

tion accuracy under different censoring and perturbation schemes. For practical demonstration, the

methodology is applied to an interesting longitudinal HIV dataset. The methodology is implement-

ed using theR software (codes available upon request from the first author), providing practitioners

with a convenient tool for further applications in their domain.

As this is the first work in developing robust outlier detection schemes for censored mixed-
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effects models, we decided to keep our estimation strategies simple enough for easy implemen-

tation. Our current proposal considers an independent within-subject covariance structure, viz.

σ2Ini
. Nevertheless, it can be extended to different unstructured covariance matrices (such as

AR(1), or ante-dependence) following the work of Pan et al. (2013). In addition, some important

covariates (such as CD4) in HIV research are often measured with measurement error (Wu 2002),

and that might also exert influence on the overall outlier detection strategies. All these issues are

currently under investigation, and we plan to tackle these in a future paper.

8 Appendix

8.1 Q̈(θ̂|θ̂) is a block-diagonal matrix

From the EM-algorithm, we know that∂Q(θ̂|θ̂)/∂θ
∣∣
θ=

̂θ
= 0. Consequenlty, we have the follow-

ing in thet-LMEC model:

n∑

i=1

X⊤
i (ûyi − Ziûbi) =

n∑

i=1

ûiX
⊤
i Xiβ̂,

n∑

i=1

(ni − tr(ûy2
i − 2ûybiZ

⊤
i + ûb2

iZ
⊤
i Zi)) =

n∑

i=1

(2β̂
⊤
X⊤

i (ûyi − Ziûbi)− ûiβ̂
⊤
X⊤

i Xiβ̂),

∂Q(θ̂|θ̂)/∂α = 0,

Finally, note that from the relationships proposed above, the term

∂2Qi(θ|θ̂)

∂β∂σ2
= −

1

σ4
X⊤

i (ûyi − Zj ûbi − ûiXiβ) = 0

and therefore the matriẍQ(θ̂|θ̂) is block-diagonal.
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