Linear Censored Regression Models with Scale Mixtures of Normal Distributions

Aldo M. Garay
Víctor H. Lachos
Heleno Bolfarine
Celso R. B. Cabral

In the framework of censored regression models the random errors are routinely assumed to have a normal distribution, mainly for mathematical convenience. However, this method has been criticized in the literature because of its sensitivity to deviations from the normality assumption. In practice, data such as income or viral load in AIDS studies, often violate this assumption because of heavy tails. Here, we first establish a new link between the cen-sored regression model and a recently studied class of symmetric distributions, which extend the normal one by the inclusion of kurtosis, called scale mixtures of normal (SMN) distributions. The Student-t, Pearson type VII, slash, contaminated normal, among others distributions, are contained in this class. Choosing a member of this class can be a good alternative to model this kind of data, because they have been shown its flexibility in several applications. In this work, we develop an analytically simple and efficient EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters, with standard errors as a by-product. The algorithm has closed-form expressions at the E-step, that rely on formulas for the mean and variance of certain truncated SMN distributions. The proposed algorithm is implemented in the R package SMNCensReg. Applications with simulated and a real data are reported, illustrating the usefulness of the new methodology.

Censored regression model
EM-type algorithms
Scale mixtures of normal distributions