Relatórios de Pesquisa

72/2022 On the Hermitian metrics and complex structures of #nS³ x S³
Yuri Bozhkov
PDF icon rp-2022-72.pdf
2/2022 Tópicos de processos estocásticos
Vicenzo Bonasorte Reis Pereira , Élcio Lebensztayn
PDF icon rp-2022-022022.pdf
1/2022 Estimates for entropy numbers of multiplier operators of multiple series
Sérgio A. Córdoba, Jéssica Milaré, Sérgio A. Tozoni

The asymptotic behavior for entropy numbers of general Fourier multiplier operators of
multiple series with respect to an abstract complete orthonormal system, on a probability
space and uniformly bounded, is studied. For example, the orthonormal system can be
obtained as the product of the functions of the Vilenkin system, Walsh system on a real sphere
or of the trigonometric system on the unit circle. General upper and lower bounds for the
entropy numbers are established by using Levy means of norms constructed using the
orthonormal system. These results are applied to get upper and lower bounds for entropy
numbers of specific multiplier operators, which generate, in particular cases, sets of finitely
and infinitely differentiable functions, in the usual sense and in the dyadic sense. It is shown
that these estimates have order sharp in various important cases.

PDF icon rp-2022-012022.pdf
1/2020 Extending Multivariate-t Semiparametric Mixed Models for Longitudinal data with Censored Responses and Heavy Tails
Thalita B. Mattos, Larissa A. Matos, Victor H. Lachos

In this paper we extended the semiparametric mixed model for longitudinal censored data with
normal errors to Student-t erros. This models allows exible functional dependence of an outcome
variable on covariates by using nonparametric regression, while accounting for correlation between
observations by using random e ects. Penalized likelihood equations are applied to derive the
maximum likelihood estimates which appear to be robust against outlying observations in the
sense of the Mahalanobis distance. We estimate nonparametric functions by using smoothing
splines jointly estimate smoothing parameter by the EM algorithm. Finally, the performance of
the proposed approach is evaluated through extensive simulation studies as well as application to
dataset from AIDS study.

PDF icon rp-2020-01.pdf
Beatriz Motta, Fernando Torres

We investigate complete plane arcs which arise from the set of rational points of certain non-Frobenius classical plane curves over finite fields. We also point out direct consequences on the Griesmer bound for some linear codes.

PDF icon rp-2019-06.pdf
Saeed Tafazolian, Fernando Torres

Abstract. Let F be the finite field of order q2. In this paper we continue the study
in [20], [19], [18] of F-maximal curves defined by equations of type yn = xℓ(xm + 1).
For example new results are obtained via certain subcovers of the nonsingular model of
vN = ut2
− u where q = tα,  ≥ 3 odd and N = (tα + 1)/(t + 1). We do observe that
the case  = 3 is closely related to the Giulietti-Korchm´aros curve.

PDF icon rp-2019-05.pdf
4/2019 Explosion in a Growth Model with Cooperative Interaction on an In nite Graph
Bruna de Oliveira Gonçalves, Marina Vachkovskaia

In this paper we study explosion/non-explosion of a continuous time growth process with cooperative interaction on Z+. We consider symmetric neighborhood and di erent types of rate functions and prove that explosion occurs for exponential rates, but not for polynomial. We also present some simulations to illustrate the explosion

PDF icon rp-2019-04.pdf
Victoriano Carmona, Fernando Fernández-Sánchez, Douglas D. Novaes.

In this paper, using the theory of inverse integrating factor, we provide a new simple proof for the Lum-Chua's conjecture, which says that a continuous planar piecewise linear differential system with two zones separated by a straight line has at most one limit cycle. In addition, we prove that if this limit cycle exists, then it is hyperbolic and its stability is characterized in terms of the parameters. To the best of our knowledge, the hyperbolicity of the limit cycle has not been pointed out before.

PDF icon rp-2019-03.pdf
2/2019 Estimates for n-widths of sets of smooth functions on complex spheres
Deimer J. J. Aleans, Sergio A. Tozoni

In this work we investigate n-widths of multiplier operators defined for functions on a complex sphere and bounded from L^p into L^q. We study lower and upper estimates for the n-widths of Kolmogorov, linear, of Gelfand and of Bernstein, of such operators. As application we obtain, in particular, estimates for the Kolmogorov n-width of classes of Sobolev, of finitely differentiable, infinitely differentiable and analytic functions on a complex sphere, in L^q, which are order sharp in various important situations.

PDF icon rp-2019-02.pdf
1/2019 Estudo de um Método Baseado em Autovalores Generalizados para o Subproblema de Região de Confiança
Jean Carlos A. Medeiros , Sandra Augusta Santos

The trust-region methods are iterative methods for numerically solving minimization problems, not only unconstrained but also constrained ones. They consist of defining a quadratic model for the objective function f from a current point x^k and establishing a closed ball centered on x^k and with radius Δ; this neighborhood around x^k is called trust region, because in this region we will trust that the model generates a good approximation for the objective function; then each iteration will have a subproblem of minimizing the model subject to the trust region, thereby generating a sequence of approximations to the solution of the problem, ie the objective function minimizer. Recently, Adachi et al.[1], based on Gander et al.[4], developed a method adressing the subproblem in a non-iterative way, solving only one generalized eigenvalue problem. This work investigates the usage of this strategy for solving low dimensional unconstrained minimization problems. The visual appeal provides an additional tool for exploring the geometric features of this approach.

PDF icon rp-2019-01.pdf